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« Negatively affect pilot operations, reduced flight time, damage. complex buildings and structures.

* Airspace management and allocation made conservative and
inefficient.

* Non-Intrusive Reduced Order Modeling and machine
learning framework for wind field prediction.

Convolutional Auto-Encoders

Prediction from CAE L1 Error

Improve safety and efficiency of low-altitude UAS operations
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ortactions sonliod to the SUAS flight nilot awareness and predicting adverse wind ¢ |mpacts on UTM and Urban Air Mobility
* Developing inverse reinforcement learning (IRL) path? natterns in complex urban setup. (UAM) efforts, package delivery,
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* Observer, Robustness, Feedback-driven. estimation, prediction towards precise  Contribute to future aviation networks and
* Despite a large cost function estimation error, the ) CondUCt_ed a survey of sUAS pilots: micrometeorology and atmospheric sensing. other applications, e.g., sUAS-assisted
trajectories from the estimated cost function mechanical turbulence due to structures; e Enhanced simulators in AirSim and ROS. wireless communication, first response, etc.

closely follows the observed trajectories. projected future trajectories.
2022 NRI & FRR Principal Investigators' Meeting Award ID#: 1925147

April 19-21, 2022 Start date: 2020-1-1




