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Abstract: In this paper, we investigate coordination of an autonomous vehicle (AV) and an intelligent
human vehicle (IHV). The IHV is a human-driven vehicle that can communicate and collaborate with
other vehicles while also providing advisory directives to the driver to optimize its maneuver. The
objective is to optimize control inputs for the AV and advisory directives for the driver on the IHV
to coordinate their motions. We consider a coordinated lane merging example where the two vehicles
need to reach a prescribed separation before the lane merging maneuver. We model the motion of the
IHV and the AV using a Discrete Hybrid Stochastic Automata (DHSA) and formulate a model predictive
control (MPC) problem to generate optimal inputs to the two vehicles. In particular, the input to the IHV
is advisory commands that stochastically transition the human state. Since solving the MPC involves
mixed-integer programming (MIP), we leverage a machine learning approach to predict optimal integer
values, thereby reducing the computational time of the optimization. Preliminary simulation results and
experimental findings from a driving simulator reveal successful coordination between the IHV and the
AV and enhanced merging performance when compared to the ‘no advising’ scenario.
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1. INTRODUCTION

According to Statista (2020), the number of AVs in operation
in the United States will be more than 2.1 million by 2025
and 20.8 million by 2030. The phenomenon of AVs rapidly in-
creasing inevitably exists as a result of the development of tech-
nologies in several areas, such as artificial intelligence, machine
learning, and automatic control. Although the number of AVs
is expected to significantly increase, the public will inevitably
have doubt about AVs’ safety and vulnerability. Both human-
driven vehicles and AVs are expected to co-exist in the next
few decades. Therefore, utilizing cooperative driving between
human-driven and AVs have the potential to make transporta-
tion more efficient and safe in the near future. According to Kim
et al. (2015), installing autonomous cars with communication
networks considerably improves their performance. As a result,
transportation system efficiency also improves.

Researchers have been interested in cooperative driving for the
past decade. There are a few studies that include a human-
driven vehicle in the coordinating process. Chiang et al. (2010)
describes a longitudinal automation system using human-in-
the-loop technologies. Their proposed system has a hierarchical
structure consisting of an adaptive sensory processor, a supervi-
sory control and a regulation control. Lam et al. (2015) models
the interaction between the driver and the vehicle in an assistive
driving system using hidden mode stochastic hybrid systems.
They also demonstrate that by monitoring both human behavior
and vehicle status, the human state may be inferred, improving
⋆ This work is supported by the National Science Foundation (NSF) Grants
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decision-making quality. Lam and Sastry (2014) presents how
the partially observable Markov decision process (POMDP)
can be used as a unified framework for the human model, the
machine dynamic model and the observation model in a human-
in-the-loop control. Driggs-Campbell et al. (2015) presents a
testbed for gathering realistic driving data while retaining safety
and control of the environmental surroundings. They demon-
strate that the realistic data may be used to construct a precise
and accurate driver model matched to an individual for semi-
autonomous systems. Tian et al. (2021) proposes that robots use
confidence-aware game-theoretic models of human behavior
when assessing the safety of human-robot interaction. In all of
these references, the human driving behavior is predicted and
optimized but AVs are not considered together with the human-
driven vehicle in a connected environment.

In this paper, we investigate cooperative driving between an
IHV and an AV in a connected environment. In particular,
we consider vehicle coordination for lane merging, where the
two vehicles need to achieve a certain safe distance before
merging. The objective is to design control inputs for the AV
and advisory commands for the driver on the IHV and coor-
dinate their behaviors. As the IHV is controlled by a human
driver, its dynamics involve continuous variables such as po-
sition and velocity of the vehicle, discrete variables such as
human states, and stochastic transitions of the human states.
We employ DHSA Bemporad and Di Cairano (2010) to model
the motion of the IHV into an MPC problem to optimize the
AV’s input and the IHV’s advisory commands. Because of the
discrete variables in the DHSA, solving the MPC problem in-
herently requires mixed-integer programming (MIP). To speed



up the computation of MIP, motivated by Bertsimas and Stellato
(2022) we train a neural network to predict optimal integer
values for the MPC, thereby reducing the MIP into non-integer
programming that can be solved faster. We conduct human-
in-the-loop experiments on a driving simulator to examine the
effectiveness of our approach. The preliminary findings show
that with the advisory commands, the two vehicles can reach
the prescribed separation faster.

The rest of this paper is organized as follows. The DHSA
and the system modeling approach are discussed in Section 2.
An MPC problem formulation for coordinated lane merging is
presented in Section 3. The implementation process of using a
NN to speed up the optimization speed is given in Section 4.
In Section 5 we present our simulation results and demonstrate
the speed up using the NN prediction. Preliminary experimental
findings acquired from a driving simulation testbed using our
optimization approach are discussed in Section 6. Conclusions
and future work are discussed in Section 7.

2. SYSTEM MODELING

2.1 Review of DHSA

DHSA is a mathematical formulation for a family of hybrid
dynamical systems. In a DHSA, the uncertainty appears on
the discrete component of the hybrid dynamics in the form
of stochastic events, which, together with deterministic events,
define the discrete state transition. A DHSA consists of four
components: the switched affine system (SAS), the event gen-
erator (EG), the mode selector (MS), and the stochastic finite
state machine (sFSM) Bemporad and Di Cairano (2010).

The SAS is defined by the linear difference equations
xc(k+1) = Ai(k)xc(k)+Bi(k)uc(k)+ fi(k) (1)

where k ∈ Z0+ ≜ {0,1, ...} is the discrete time index, xc(k) ∈
Rnc is the vectors of continuous states, nc is the number of
continuous states, uc(k) ∈ Rmc is the vectors of continuous
inputs, mc is the number of continuous inputs and i(k) ∈ I ≜
{1,2, · · · ,s} is the current mode of the system. {Ai,Bi, fi}i∈I
are constant matrices of suitable dimensions that define the
dynamics of the system in the current mode i(k).

The EG produces binary event signals δe(k) ∈ {0,1}ne where
ne is the number of generated binary event signals. It is defined
by

δe(k) = fEG(xc(k),uc(k)) (2)
where fEG : Rnc+mc →{0,1}ne is the event generation function
given by

[ f j
EG(xc,uc) = 1]↔ [H j

e xc + J j
e uc +K j

e ≤ 0] (3)
in which He ∈ Rne×nc , Je ∈ Rne×mc , and Ke ∈ Rne are constant
matrices defining linear threshold conditions. The superscript j
denotes the jth row.

The MS is defined by a Boolean function fMS : {0,1}nb+mb+ne →
I where nb is the number of binary states and mb is the number
of binary inputs. It can be defined as

i(k) = fMS(xb(k),ub(k),δe(k)) (4)
where xb ∈ {0,1}nb is the vector of binary states and ub ∈
{0,1}mb is the vector of binary inputs.

The sFSM is a Boolean function fsFSM : {0,1}2nb+mb+ne →
[0,1] satisfying

p[xb(k+1) = x̂b] = fsFSM(xb(k),ub(k),δe(k), x̂b) (5)

where, p[·] denotes the probability of a transition.

2.2 Application to vehicle coordination

In this paper, we consider coordination of an AV and an IHV.
We assume that the AV can sense its surroundings, decide
which path to take to its destination, and drive itself. Therefore,
the dynamics of the AV and its autonomous inputs determine
the vehicle’s states. The IHV is a human-driven vehicle with
an assisted driving device that can communicate with other
vehicles through V2V communication and provide “advisory
commands” to the human driver for coordinated driving. The
driver has the option to follow or not follow the commands.
Thus, the IHV is a hybrid system consisting of variables of
both continuous and discrete nature. We adopt the DHSA
formulation, where the discrete human states dictate the models
of the vehicle states and actions and the transitions of human
states are stochastic. The dynamics of the vehicle is modeled
with a SAS and the stochastic human transitions are modeled
with sFSM. The advisory commands enter the sFSM as a
control input to stochastically transition the human states.

In the next section, we present the details of the DHSA for-
mulation for coordinated lane merging between an AV and an
IHV. The formulation can be extended to address more than two
vehicles, which will be considered in our future work.

3. COORDINATION FOR LANE MERGING

We consider coordination for lane merging of one AV and
one IHV. The goal is to reach dr meters in the longitudinal
distance between the two vehicles as fast as possible to allow
a safe and efficient lane merging. While the motion of the
AV can be directly controlled by the autonomous input, the
motion of the IHV can be impacted only through the driver
via advisory commands. To coordinate the motion of the two
vehicles, we formulate a stochastic MPC problem with state and
control constraints. The solution to the MPC problem provides
the optimal advisory commands to the IHV and the optimal
autonomous controls to the AV.

3.1 Dynamic models

We consider a linear state space model for the motion of an AV
xr

k+1 = Arxr
k +Brur

k, (6)
where the subscript k ∈ Z+ is the discrete-time index, the
longitudinal position and velocity with respect to the origin
are represented by xr

k ∈ R2, Ar and Br are matrices of suitable
dimensions that define the AV dynamics, and ur ∈R is the input
(acceleration) to the AV.

The IHV’s motion is determined by whether the driver follows
the advised commands. As a result, it switches between two
dynamic systems based on a binary decision variable: not fol-
lowing the advisory command (0), which indicates that the IHV
is under human control, and following the advisory command
(1), which indicates that the IHV is under advisory control. We
assume that the vehicle models are given by

IHV under human control: xh
k+1 = Ahxh

k +Bh f h
k (7)

IHV under advisory control: xh
k+1 = Ahxh

k +Bhua
k , (8)

where Ah and Bh are matrices of suitable dimensions that define
the IHV dynamics, and f h

k ∈ R is the human input and ua
k ∈ R



is the advisory commands for the IHV. We assume that f h
k

is available through a driver monitoring system. For example,
in Tran et al. (2018), we developed such a system based on
vehicle data and video data of the driver.

Denote by xB
k ∈ {0,1} the event of the IHV following the

advisory control (1) or not (0) and let xk = [(xr
k)

T (xh
k)

T ]T . We
also define

A1 = A2 =

(
Ar 0
0 Ah

)
, B1 =

(
Br 0
0 0

)
, B2 =

(
Br 0
0 Bh

)
,

f1 =

(
0

Bh f h
k

)
, f2 =

(
0
0

)
. (9)

Then (6)–(8) can be rewritten in the form of (1)

xk+1 = Aik xk +Bik

(
ur

k
ua

k

)
+ fik (10)

where the MS is given by
ik = xB

k +1. (11)
Note that the MS is independent of an event generator.

An important step in the MPC formulation in Bemporad and
Di Cairano (2010) is to write (10) into a single linear system
using mixed-logic dynamical (MLD) systems Bemporad and
Morari (1999). Towards this end, we further define zu

k = xB
k (u

a
k −

f h
k ) and rewrite (10) as

xk+1 =

(
Ar 0
0 Ah

)
xk +

(
Br 0
0 Bh

)(
ur

k
zu

k

)
+

(
0

Bh f h
k

)
. (12)

One can obtain the solution to xk based on ur
k, zu

k , and f h
k and

the initial conditions xr
0 and xh

0 as

xr
k = Ak

rxr
0 +

k−1

∑
j=0

Ak− j−1
r Brur

j, (13)

xh
k = Ak

hxh
0 +

k−1

∑
j=0

Ak− j−1
h Bh f h

j +
k−1

∑
j=0

Ak− j−1
h Bhzu

j . (14)

The equality zu
k = xB

k (u
a
k − f h

k ) will be enforced as a constraint
in the MPC formulation.

3.2 Stochastic human state model

We model the stochastic transitions of the binary human state
xB

k by an sFSM. Let uB
k ∈ {0,1} denote the on/off of an advisory

control at time step k. Based on the first-order Markov assump-
tion, we prescribe the transition probability of xB

k+1 given xB
k and

uB
k . Therefore, there are 8 different possibilities for transitions.

Following Bemporad and Di Cairano (2010), we introduce
wi ∈ {0,1} (an uncontrollable event) for each transition and
constrain wi = 1 if and only if the ith transition occurs.

The probability of each event p[wi
k] needs to be specified.

In particular, we let p[w2
k ] = pt which is the probability of

transitioning to an advisory action. We also let p[w6
k ] = p f

which is the probability of continuously following the advisory
control. We set p[w3

k ] = 1, p[w4
k ] = 0, p[w7

k ] = 1, p[w8
k ] = 0.

Note that p[wi
k]+ p[wi+1

k ] = 1, i = 1,3,5,7. The pt and p f may
be learned from human-in-the-loop experiments. The transition
of xB

k and the events wi
k are illustrated in Fig. 1.

Let C = [−1 0 − 1 0]. One can verify that a linear model
describing the transitions of the sFSM is given by

xB
k+1 = uB

k +C[w1
k w2

k w5
k w6

k ]
⊤ (15)

Fig. 1. Stochastic finite state machine for human state transition.

which leads to

xB
k =

k−1

∑
j=0

uB
j +C

k−1

∑
j=0

w j,∀k ≥ 1. (16)

3.3 Optimization constraints

There are five sets of constraints considered in our MPC formu-
lation. Denote by Mu and mu the upper and lower limit of the
input acceleration for the IHV, respectively.

First set of constraints: The equality zu
k = xB

k (u
a
k − f h

k )
together with the upper and lower bounds Mu and mu leads to

zu
k ≤ (Mu − f h

k )x
B
k , zu

k ≥ (mu − f h
k )x

B
k (17)

zu
k ≤ (ua

k − f h
k )− (mu − f h

k )(1− xB
k ) (18)

zu
k ≥ (ua

k − f h
k )− (Mu − f h

k )(1− xB
k ). (19)

Second set of constraints: The state transitions defined in the
sFSM are enforced in these constraints. Let δ 1

k = xB
k uB

k . Then
the transitions in Fig1 produce the following inequalities

w1
k +w2

k ≤ (1− xB
k )u

B
k = uB

k −δ
1
k , w1

k +w2
k ≥ uB

k −δ
1
k , (20)

w5
k +w6

k ≤ xB
k uB

k = δ
1
k , w5

k +w6
k ≥ δ

1
k , (21)

−xB
k +δ

1
k ≤ 0, −uB

k +δ
1
k ≤ 0, uB

k + xB
k ≤ 1+δ

1
k . (22)

Third set of constraints: For collision avoidance during lane
merging, the longitudinal position between the two vehicles
needs to be larger than a threshold dr > 0, i.e.,

|xr
k,1 − xh

k,1| ≥ dr (23)
where xk,1 denotes the position state. We introduce two binary
variables b1,k and b2,k and two inequalities

xr
k,1 − xh

k,1 ≤−dr + M̄b1,k (24)

xr
k,1 − xh

k,1 ≥ dr − M̄b2,k (25)

with a sufficiently large M̄. When b1,k = 0 and b2,k = 1, (24)
becomes xr

k,1 − xh
k,1 ≤ −dr and (25) becomes xr

k,1 − xh
k,1 ≥ dr −

M̄, which holds trivially. Similarly, when b1,k = 1 and b2,k =

0, (25) becomes xr
k,1 −xh

k,1 ≥ dr and (24) becomes xr
k,1 −xh

k,1 ≤
−dr + M̄, which holds trivially. Thus, b1,k + b2,k = 1 ensures
that (23) is satisfied at time step k.

To reduce the time to reach the condition in (23), we introduce
a constraint

b1,k +b2,k ≥ 1 (26)
and minimize b1,k +b2,k (among other objectives) in the objec-
tive function.

Fourth set of constraints: All the limits on the states of the
IHV and AV are enforced using these set of constraints, i.e.,

xr
k ≤ M, xr

k ≥ m (27)

xh
k ≤ M, xh

k ≥ m (28)
for some M and m.



Fifth set of Constraints: Chance constraints are used to
reject trajectories that only occur infrequently from the set
of possible solutions. In our DHSA formulation, the possible
transition events are given by wk =

[
w1

k w2
k w5

k w6
k

]⊤ and the

transition probabilities are p =
[
p[w1

k ] p[w2
k ] p[w5

k ] p[w6
k ]
]⊤.

Following Bemporad and Di Cairano (2010), the probability of
the state trajectory can be computed as π0

...
πK−1

=

 w⊤
0
...

w⊤
K−1

 p (29)

where K is the look ahead window in the MPC. At step k, the
πk indicates the likelihood of taking the transition described by
wk. The probability of the whole w trajectory, π(w), is given by

π(w) = π(w0,w1, . . . ,wk) =
K−1

∏
k=0

πk. (30)

Then the chance constraint can be defined as
π(w)≥ p̃ (31)

with p̃ ∈ [0,1] being a probability bound. This chance con-
straint (31) enforces that w realizes with at least p̃ probability.
From (31), for our system, we can compute the constraint as

lnπ(w) =
K−1

∑
k=0

∑
i=1,2,5,6

wi
k ln(p[wi

k])≥ ln(p̃). (32)

3.4 The MPC formulation

Let K be the length of the look-ahead window in the MPC. At
each time step k, the decision variables consist of continuous
and binary variables, summarized as

θk =
[
ur

k ua
k zu

k uB
k wk δ

1
k bk

]
(33)

where ur
k = [ur

k, ur
k+1, · · · , ur

k+K−1] and ua
k , zu

k , uB
k , wk, δ 1

k and
bk are defined similarly to ur

k. The continuous variables are ur
k,

ua
k , and zu

k while the other variables are binary.

The objective function of the MPC is designed to be the
weighted sum of five quadratic or linear functions of θk, each
with a different objective discussed below.

• Function 1 minimizes the energy of the control inputs to
the AV and the IHV based on their respective weights.
Function 1 is a quadratic function of θk;

• Function 2 maximizes the speed of both vehicles within
a speed limit for fast lane merging. Function 2 is a linear
function of θk;

• Function 3 minimizes the number of advisory actions so
that the merge can happen with reduced advisory actions.
Function 3 is a linear function of θk;

• Function 4 maximizes the probability of the stochastic
events so that at least one of the four events occurs in a
time instance. Function 4 is a linear function of θk;

• Function 5 minimizes b1,k+b2,k so that the distance dr can
be reached quickly. Function 5 is a linear function of θk.

The objective function of the MPC is the sum of the aforemen-
tioned five functions, which can be represented as

J(θk) = θ
⊤
k Qθk + c⊤θk (34)

where Q ∈ Rnt×nt and c ∈ R1×nt are the designed objective
weights for the system. nt is the total number of decision
variables. The constraints of the MPC are (13), (14), (16)

to (22), (24) to (28), (32), which are linear in θk, and thus can
be written as Gkθk ≤ gk. Then the MPC is given by

min
θk

J(θk), s.t. Gkθk ≤ gk. (35)

Applying this optimization in a receding horizon fashion, we
obtain the MPC algorithm where the optimal control inputs for
each step k are applied to the AV and the advisory commands
are conveyed to the IHV in each time step.

4. MACHINE LEARNING TO SPEED UP INTEGER
OPTIMIZATION

The solutions to the MPC formulations can be obtained from a
standard mixed-integer programming solver, e.g., the Gurobi
optimizer Gurobi Optimization, LLC (2022). However, the
computational time needed by the Gurobi solver may not be
suitable for online implementation or scalable to a larger num-
ber of vehicles. We investigate a simplified version of the ap-
proach inspired by Bertsimas and Stellato (2022) to speed up
the computation via machine learning and offline training.

We generate binary output results from Gurobi for different
initial conditions and store them as training data sets for a
neural network (NN). Once trained, the NN will predict the
optimal integer values, thereby reducing the integer program
to a non-integer program. The input parameters to the NN
are defined as the initial speeds of the IHV sph and the AV
spr, the position difference between the two vehicles di f , the
probability of transitioning to advisory action pt , and the initial
human state xB

0 . For these parameters, the optimized binary
outputs for K = 30 time steps are calculated. A total of 13,770
different data sets are collected as the training data.

For each data set, the optimal values of the binary variables are
obtained from the Gurobi and recorded. Each unique combina-
tion of the optimal binary variables is called a strategy and it
is given a strategy index. Calculating all different strategies,
we obtain 28 unique strategies for our problem formulation.
Then we denote the 28 strategies with a one-hot encoding
where all the elements of a 28× 1 vector are 0 except the one
corresponding to the strategy index equal to 1. We use the one-
hot encoded outputs as the target training data to train a classi-
fication NN model. Table 1 below lists the parameters used for
the NN training model. Once trained, the NN predicts probable
strategies among the 28 options, and the optimal integer values
are extracted from the probable strategies.

Table 1. NN specifiations

Parameter Used setting

Number of hidden layers 3
Width of hidden layers 50,150,150

Learning rate 0.001
Batch size 1000

Number of epochs 500
Inner layer activation function ReLu

Output layer activation function Softmax
Loss function Binary cross-entropy

The trained NN model predicts the probability of a strategy to
be the correct optimal strategy. The top 4 probable strategies
are selected and compared. For each strategy, we optimize the
cost function with the binary variables fixed to the values in
that strategy, which simplifies the optimization to a convex
optimization problem without any integers. The strategy with
the lowest cost function is chosen as the optimal solution.



5. SIMULATION RESULTS

We implement the MPC method in simulations for the initial
conditions as sph = 15 m/s, spr = 15 m/s, di f = 0 m, and the
initial Human state xB

0 = 0. The size of the look-ahead window
was chosen as K = 30 and each time step is 0.8 seconds. We
use a double integrator model for the vehicle dynamics. The
simulations were run in Python on a computer with Intel(R)
Core i7-3770 CPU @ 3.40GHz with 16GB RAM and NVIDIA
GeForce GT 630 graphics card.

5.1 Simulated optimization results

This simulation is formulated following Section 3.4. Assuming
that pt = 0.9, i.e., the human starts to follow the advisory
command after the first time step with a probability of 90%,
and p f = 0.99, i.e., the human will continue to follow the
advisory command after the first time step with a probability
of 99%, we obtain the results shown in Fig. 2(left). We can
see that the merging action is distributed between the AV and
the IHV for optimal merging. When we lower pt and p f to
pt = 0.4 and p f = 0.4, we obtain the MPC results shown in
Fig. 2(right). Note that for the optimal merging with high pt

Fig. 2. Simulated optimization results for pt = 0.9 and p f =
0.99 (left column) for pt = 0.4 and p f = 0.4 (right column)

and p f the merging action is distributed between the AV and
the IHV. With a lower pt and p f , the optimized trajectory for the
IHV is changed to accommodate for the human’s probability of
not following advisory commands. For different probabilities,
different optimal trajectories are expected. If pt is further de-
creased, no advising actions will be generated for the IHV and
only the AV will be responsible for creating the separation. The
average time for each step of calculation by Gurobi is 0.32 sec.

We conduct 20 Monte Carlo simulations with a varying pt , p f =
0.99, and all other initial conditions fixed. The average time for
merge tavg, the average distance traveled by IHV avdIHV and
AV avdAV , and the average speed change by IHV avsIHV and
AV avsAV are presented in Table 2. The tavg, avdIHV , and avdAV
decrease as pt increases, which indicates improved efficiency.
The avsIHV and avsAV reveal that the speedup and slowdown are
more distributed among the AV and IHV with increasing pt .

Table 2. Monte Carlo simulation results

pt tavg avdIHV avdAV avsIHV avsAV

0.1 6.40 12.00 20.19 0.00 1.50
0.5 5.75 11.41 19.79 -0.71 1.42
0.9 5.55 11.29 19.98 -0.85 1.37

5.2 Speed-up by neural network

We report preliminary results on using NN to speed up the
MIP in the MPC optimization. We consider the formulation in
Section 5.1. The details of the NN training are discussed in Sec-
tion 4. The results produced by the Gurobi and the NN-based
optimization are compared against each other for 1050 test data
points. For different initial conditions, the Gurobi optimization
and the NN-based optimization results are evaluated.

• The average time to solve the MPC using Gurobi is
0.325 sec. The average time to solve the MPC using NN-
based optimization (including NN inference) is 0.1524
sec, which means that the NN-based optimization is more
than twice as fast as the Gurobi solver in this example.

• The accuracy of the NN prediction of the integer values
is 99.7%. Even for the 0.3% wrong predictions, the MPC
produces sub-optimal results satisfying all the constraints.

6. EXPERIMENTAL RESULTS

Multiple experiments were conducted to validate and demon-
strate the effectiveness of our proposed MPC algorithm.

A Carnetsoft simulator Carnetsoft Inc. (2016) is adopted as
the simulation testbed, in which data of an ego vehicle that a
human is driving through the steering wheel, pedals, and shifter
is collected, as shown in Fig. 3, and AVs can be implemented
and controlled. Lane-merging scenarios are established based
on this simulation testbed. In Fig. 3, the copilot attached to
the steering wheel plate consists of a screen, a speaker and a
Raspberry Pi 4B, which is responsible for the data communi-
cation and processing between the simulator and the Gurobi
server. Two vehicles are involved in the merging scenarios. The
ego vehicle is driven by a human subject and its data including
velocity and location are obtained every 0.8 sec in real-time.
The black AV on the right starts at the same speed as the human-
driven vehicle and tries to merge into the human-driven vehi-
cle’s lane at a random time point. During the merging process,
the commands for the AV are generated by the MPC algorithm
and implemented in the simulator in real-time. We conducted

Fig. 3. The simulation testbed.

2 sets of experiments. The first set was with the advisory com-
mand ‘Off’ and the second set was with the advisory command
‘On’. The goal of these experiments was to assess how the
merging performs with and without advisory commands to the
human driver. Each set of studies was repeated twice with 5
different drivers, totaling 10 experiments per set. Out of these
10 experimental data 4 merging tests from 4 different drivers
are shown in Fig. 4 and Fig. 5, respectively.

For the test, we instructed the human driver to drive with the
AV. For the ‘On’ scenarios, when the AV was within the merg-
ing range, the IHV was sent the advising command through
speakers to speed up, slow down or maintain the speed based



Fig. 4. Experimental velocity profiles for AV and IHV with
advisory command ‘Off’ for different drivers.

Fig. 5. Experimental velocity profiles for AV and IHV with
advisory command ‘On’ for different drivers

on the optimization. The AV was sent the input command based
on the MPC formulation. Because of the MPC formulation, the
AV automatically changes its speed based on the IHV speed and
behavior. Note that in our current setup, the speakers can only
announce ‘speedup’, ‘slow down’, or ‘maintain speed’ without
specifying a magnitude of acceleration or deceleration.

The optimal velocity profiles from the MPC are also plotted
with the experimental results in Fig. 4 and Fig. 5. These
profiles are the trajectories that would be the optimal solution
for the two vehicles if the human was following the advisory
command. With the advisory command ‘Off’, the human’s
behavior is less predictable. For example, in the cases of Driver
1 and Driver 4, the driver’s behavior was the opposite of the
optimal behavior. Among all of the test data sets from the
5 drivers, the driver has only a 40% probability of moving
towards the advisory command and attempting to execute the
optimal action for merging. The average merging time is 5.52
sec and the standard deviation of the merging times is 2.16 sec.

With the advisory command ‘On’, the human ultimately at-
tempts to follow the advisory command. Even though the veloc-
ity profile of the IHV doesn’t follow the optimal MPC solution
in Fig. 5, it is driving towards the optimal solution compared
with Fig. 4 The human driver has a 100% probability of moving
toward the advisory command and attempting to execute the
optimal action required for merging in all of the test data sets
from 5 different drivers with advisory command ‘On’. The
average merging time is 4.64 sec with a standard deviation of
1.59 sec, which is faster than with the advisory command ‘Off’.
We conjecture that with a better user interface, the human driver
could follow the advised commands better.

7. CONCLUSIONS AND FUTURE WORK

We present a framework for modeling the motion of the IHV
and the AV using a DHSA, and an MPC problem for coor-
dinated merging to generate optimal inputs for the AV and
optimal advisory commands for the IHV. The simulation results
show that the MPC algorithm takes into account the stochastic
transitions of the human states and provides optimal merg-
ing actions. Preliminary experiments from a driving simulator
testbed show promising results for successful coordination be-
tween an IHV and an AV. Future work includes extending the
formulation to more vehicles, developing a recognition model
to estimate the human driver’s intention state, and experiment-
ing with more complex driving scenarios.
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