Digital Control Systems MAE/ECEN 5473

Controller and observer design

Oklahoma State University

August 14, 2023

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Control design for SS DTS

 $x(k + 1) = Gx(k) + Hu(k), y(k) = Cx(k), x(k) \in \mathbb{R}^n$

Before designing any controller, check if the system is controllable.

Controllability (completely state controllable)

There exists a piecewise constant control $u(k)$ such that from any initial condition of $x(k)$, $x(0)$, the state $x(k)$ can be transferred to any desired state $x_f \in \mathbb{R}^n$ in a finite time.

KORKAR KERKER SAGA

- \blacktriangleright Finite time:
- ▶ Control signal $u(k)$

Derivation of controllability condition

Examples

Determine controllability: Diagonal form

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Determine controllability: General form

Example

Observability

 $x(k + 1) = Gx(k) + Hu(k), y(k) = Cx(k) + Du(k), x(k) \in \mathbb{R}^n$

▶ Dual concept to controllability, required for observer design (state) observability

Every initial condition $x(0)$ can be determined by observations $y(k)$ and control inputs $u(k)$ over a finite number of sampling instants.

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

Duality

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코』 Y 9 Q @

Example $\frac{Y(z)}{U(z)} = \frac{z+0.8}{z^2+1.3z+1}$ $z^2 + 1.3z + 0.4$

Observability and controllability of a PTF

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Sampling effect on controllability and observability

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Example

$$
\dot{x} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} x + \begin{pmatrix} 0 \\ 1 \end{pmatrix} u, \quad y = \begin{bmatrix} 1 & 0 \end{bmatrix} x.
$$

Controller design: pole placement (PP)

Consider the open-loop system $x(k + 1) = Gx(k) + Hu(k)$, $x(k) \in \mathbb{R}^n$.

- ▶ Assume a full state feedback: $u(k) = -Kx(k)$, $K \in \mathbb{R}^{1 \times n}$: control gain to be designed.
- \triangleright Objective: choose K such that the closed-loop poles are at desired locations $z_1 = \mu_1, \cdots, z_n = \mu_n$, where μ_i 's are given.

KORKAR KERKER SAGA

- ▶ Closed-loop system: $x(k + 1) = Gx(k) + Hu(k) =$
- ▶ Closed-loop poles are eigenvalues of
- \triangleright Necessary & sufficient condition for PP: the system is controllable.

Solutions to PP

$$
PP \Leftrightarrow |zI - (G - H \underbrace{K}_{unknown})| = \underbrace{(z - \mu_1)(z - \mu_2) \cdots (z - \mu_n)}_{unknown}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Solution 1 (Good for low order systems)

- 1. Let $K =$
- 2. Compute
- 3. Match
- 4. Use

Example

$$
x(k+1) = \underbrace{\begin{pmatrix} 0 & 1 \\ -0.16 & -1 \end{pmatrix}}_{G} x(k) + \underbrace{\begin{pmatrix} 0 \\ 1 \end{pmatrix}}_{H} u(k).
$$
 Find $u(k) = -Kx(k)$
such that the closed-loop poles are at $z_{1,2} = 0.5 \pm 0.5j$.

Solution 2: formula

\n- Original characteristic equation:
\n- $$
|z| - G| = z^n + a_1 z^{n-1} + \cdots + a_{n-1} z + a_n
$$
\n Disired characteristic equation:\n
$$
(z - \mu_1) \cdots (z - \mu_n) = z^n + \alpha_1 z^{n-1} + \cdots + \alpha_{n-1} z + a_n
$$
\n
\n- $$
K =
$$
\n
\n

▶ special case: if (G, H) is already in CCF,

K □ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

Example

$$
x(k+1) = \underbrace{\begin{pmatrix} 0 & 1 \\ -0.16 & -1 \end{pmatrix}}_{G} x(k) + \underbrace{\begin{pmatrix} 0 \\ 1 \end{pmatrix}}_{H} u(k).
$$
 Find $u(k) = -Kx(k)$
such that the closed-loop poles are at $z_{1,2} = 0.5 \pm 0.5j$.

Solution 3: Ackermann formula

Example

$$
x(k+1) = \underbrace{\begin{pmatrix} 1 & T \\ 0 & 1 \end{pmatrix}}_{G} x(k) + \underbrace{\begin{pmatrix} \frac{T^{2}}{2} \\ T \end{pmatrix}}_{H} u(k).
$$
 Find $u(k) = -Kx(k)$
such that the closed-loop poles are at $z_{1,2} = 0, 0$.

Final comments

▶ Deadbeat control

▶ All the poles are placed at 0: unique to DTS

 \blacktriangleright x(k) converges to 0 in *n* steps!!

▶ Price paid: large control effort

- ▶ Where to place the closed-loop poles
	- \blacktriangleright Inside the unit circle
	- ▶ Examine a few sets of closed-loop poles: tradeoff between convergence speed & sensitivity to noise and disturbance.

Observer design

▶ Objective: reconstructs $x(k)$ based on $y(k)$ and $u(k)$

KO K K Ø K K E K K E K V K K K K K K K K K

Observer structure

$$
x(k + 1) = Gx(k) + Hu(k), y(k) = Cx(k) + Du(k)
$$

▶ Basic requirement: the system must be observable.

▶ General structure of an observer: $\tilde{x}(k+1) = G\tilde{x}(k) + Hu(k) + K_e[y(k) - (C\tilde{x}(k) + Du(k))]$

KELK KØLK VELKEN EL 1990

▶ Design K_e such that $|\tilde{x}(k) - x(k)| \rightarrow 0$ as $k \rightarrow \infty$.

Condition on K_e

▶ Define the error $e(k) = \tilde{x}(k) - x(k)$ and derive its dynamics.

KE K K Ø K K E K K E K V R K K K K K K K K

► Objective
$$
e(k) \rightarrow 0, \forall x(0) \Leftrightarrow
$$

$$
\blacktriangleright
$$
 Because (G, C) is observable,

Equivalence to a PP problem

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Solution 1: direct computation

Given desired poles of $G - K_eC$ as μ_1, \cdots, μ_n

KO K K Ø K K E K K E K V K K K K K K K K K

Solution 2

K ロ K K d K K B K K B K X A K K K G K C K

Solution 3

K ロ K K d K K B K K B K X A K K K G K C K

Example

$$
x(k+1) = \underbrace{\begin{pmatrix} 1 & T \\ 0 & 1 \end{pmatrix}}_{G} x(k) + \underbrace{\begin{pmatrix} \frac{T^{2}}{2} \\ T \end{pmatrix}}_{H} u(k), y = \begin{bmatrix} 1 & 0 \end{bmatrix} x(k).
$$
 Design an observer such that the desired observer poles are at 0, 0.

$PP +$ observer design

$$
x(k+1) = Gx(k) + Hu(k), y = Cx(k).
$$

Design $u = -K\tilde{x}(k)$ where K is designed using PP and $\tilde{x}(k)$ is the estimate of $x(k)$ from an observer.

 \blacktriangleright Closed-loop dynamics

Separation principle

- \triangleright Design a stabilizing control K assuming
- \triangleright Design a stable observer to estimate the full state $x(k)$ by $\tilde{x}(k)$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

- ▶ Implement
- \blacktriangleright The resulting closed-loop system
- 1. Stability
- 2. Observer convergence

Servo control: integral control

- ▶ Control objective: regulate the system output to track a reference signal $r(k)$
- \triangleright When $r(k)$ is a step function, an integral control is typically needed to track $r(k)$.

dynamics:
$$
x(k + 1) = Gx(k) + Hu(k), y = Cx(k)
$$

integral control: $v(k) = v(k - 1) + [r(k) - y(k)]$

implemented control: $u(k) = -K_2x(k) + K_1v(k)$

▶ Design K_1 and K_2 such that $y(k)$ tracks a constant $r(k)$ and the closed-loop system is g.a.s.

KORKAR KERKER SAGA

Main idea

▶ Augment the state $x(k)$ with $v(k)$, i.e.,

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

• Derive $\xi(k)$ dynamics.

At the steady state

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코』 Y 9 Q @

Design procedure

1. Design

2. Solve for K_1 and K_2 based on

▶ If not all states are available, design an observer to estimate $x(k)$ and replace the control with $u(k) = -K_2\tilde{x}(k) + K_1v(k)$.

KORK ERKER ADAM ADA

Overall block diagram

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Example

$$
x(k+1) = \underbrace{\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ -0.12 & -0.01 & 1 \end{pmatrix}}_{y = [0.5 \ 1 \ 0]x(k).} x(k) + \underbrace{\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}}_{H} u(k),
$$

since $u(k) = \frac{1}{2} \left[\begin{pmatrix} 0.5 & 1 & 0 \end{pmatrix} x(k) \right]$.

Design $u(k) = -K_2x(k) + K_1v(k)$ for y to track a constant r.

Kロトメ部トメミトメミト ミニのQC