Digital Control Systems MAE/ECEN 5473

Z Transform

Oklahoma State University

August 14, 2023

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

DCS overview

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ○ ○ ○ ○

Types of signals

A signal x(t) has the following aspects:

- Time: defined over all the time interval (CT) vs. only at specific time instants (DT)
- Magnitude: real value vs. quantized value
- continuity: whether the signal is continuous over time (not main focus here)

	Real	Quantized	
СТ	Analog (A)	? (B)	
DT	OT Sampled (C) Digital (D)		

• The distinction between continuous-time vs. analog, discrete-time vs. digital is not that significant, i.e., words used interchangeably.

Identify different types of signals

(日)

æ

Expand S/H

Modeling the sample and hold proces: Motivation

- If A/D happens instantaneously and sampling is extremely fast, then digital signals would approach the analog signals.
- The values are sampled and held at specific intervals, causing the system performance change w.r.t. changes in sampling rate.
- Must develop a mathematical model to represent this sample-and-hold process (S/H)
- Once the model for S/H is known, we can start analyzing and designing controls.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Modeling the sampler: the Z transform

- How to represent the sampled signal? Applying Laplace transform is difficult/unwieldy.
- Develop a tool called the z transform that is applicable to sampled signals.
- Sampled signals (discrete-time signals): x(t) sampled at time 0, T, 2T, ..., where T is the sampling period, represented as x(kT) or sometimes x(k), k = 0, 1, ..., (Note the difference x(kT)-sampled signal and x(k)-just a sequence of numbers.)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

> Z transform applies to x(t), x(kT), and x(k).

Z-transform

Most common: One-sided z transform (assumes x(t) = 0, t < 0 or x(k) = 0, k < 0)</p>

Continuous time signal x(t), t ≥ 0 or a sampled sequence x(kT), k ≥ 0, T sampling period

$$X(z) = \mathcal{Z}[x(t)] = \mathcal{Z}[x(kT)] = \sum_{k=0}^{\infty} x(kT)z^{-k}$$

A sequence of numbers x(k), $k \ge 0$,

$$X(z) = \mathcal{Z}[x(k)] = \sum_{k=0}^{\infty} x(k) z^{-k}$$

z is complex variable.

Two-sided z transform

Two-sided z transform (assumes $x(t) \neq 0, t < 0$ or $x(k) \neq 0, k < 0$)

• Continuous time signal x(t), or a sampled sequence x(kT)

$$X(z) = \mathcal{Z}[x(t)] = \mathcal{Z}[x(kT)] = \sum_{k=-\infty}^{\infty} x(kT)z^{-k}$$

0

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

A sequence of numbers x(k)

$$X(z) = \mathcal{Z}[x(k)] = \sum_{k=-\infty}^{\infty} x(k) z^{-k}$$

Calculating z transforms

► Given x(t), X(z) = x(0) + x(T)z⁻¹ + x(2T)z⁻² + · · · (or vice versa)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Z transforms of elementary functions

Example

Z transform of step input.

Example: Z transform of Ramp input

<ロト < 回 ト < 三 ト < 三 ト 三 の < ()</p>

Comments

Note on convergence

In calculating the Z transform of step response, note that the series converges if |z| > 1. In finding z transforms, z is a dummy variable. As long as there is a region of z for which X(z) is converging, it is fine. We don't have to specify it.

Note on validity

The obtained X(z) is valid throughout the z plane except at poles of X(z).

Table of z tranforms

	f(t)	F(s)	F(z)	f(kT)
1.	<i>u</i> (t)	$\frac{1}{s}$	$\frac{z}{z-1}$	u(kT)
2.	t	$\frac{1}{s^2}$	$\frac{Tz}{(z-1)^2}$	kT
3.	t ⁿ	$\frac{n!}{s^{n+1}}$	$\lim_{a\to 0} (-1)^n \frac{d^n}{da^n} \left[\frac{z}{z - e^{-aT}} \right]$	$(kT)^n$
4.	e^{-at}	$\frac{1}{s+a}$	$\frac{z}{z-e^{-aT}}$	e^{-akT}
5.	$t^n e^{-at}$	$\frac{n!}{(s+a)^{n+1}}$	$(-1)^n \frac{d^n}{da^n} \left[\frac{z}{z - e^{-aT}} \right]$	$(kT)^n e^{-akT}$
6.	sin wt	$\frac{\omega}{s^2+\omega^2}$	$\frac{z\sin\omega T}{z^2 - 2z\cos\omega T + 1}$	$\sin \omega kT$
7.	cos wt	$\frac{s}{s^2+\omega^2}$	$\frac{z(z-\cos\omega T)}{z^2-2z\cos\omega T+1}$	$\cos \omega kT$
8.	$e^{-at}\sin\omega t$	$\frac{\omega}{\left(s+a\right)^2+\omega^2}$	$\frac{ze^{-aT}\sin\omega T}{z^2 - 2ze^{-aT}\cos\omega T + e^{-2aT}}$	$e^{-akT}\sin\omega kT$
9.	$e^{-at}\cos\omega t$	$\frac{s+a}{\left(s+a\right)^2+\omega^2}$	$\frac{z^2 - ze^{-aT}\cos\omega T}{z^2 - 2ze^{-aT}\cos\omega T + e^{-2aT}}$	$e^{-akT}\cos\omega kT$

Example

Table of z transforms also allows conversion from Laplace transform to Z transform.

Convert Laplace transform to time domain and then to Z transform

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Use Table of z transforms to directly convert

Example

$$rac{1}{s(s+1)}$$
 is $1 - e^{-t}$ in time domain. Refer to the table.
 $rac{1}{s(s+1)} = rac{1}{s} - rac{1}{s+1}$ and then refer to the table

Important properties of z transforms

- Scaling: if X(z) is the Z transform of x(k), Z[ax(k)] = aX(z).
- Linearity of the transform:

Multiplication of a^k: if X(z) is the z transform of x(k), Z[a^kx(k)] = X(a⁻¹z), i.e., replace z with a⁻¹z. Note that k represents the time.

Two translation theorems

Real translation theorem: If x(t) = 0 for t < 0, and if X(z) is the z transform of x(t),

$$\mathcal{Z}(x(t-nT)) = z^{-n}X(z)$$
 backward $\mathcal{Z}(x(t+nT)) = z^n(X(z) - \sum_{k=0}^{n-1} x(kT)z^{-k})$ forward

Complex translation theorem: if x(t) has the z transform of X(z),

$$\mathcal{Z}(e^{-at}x(t)) = X(ze^{aT})$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Example

Step function

Example (discrete integrator)

Example: complex translation

▲ロト ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ● 回 ● の Q @

Two value theorems

- Initial value theorem (IVT): If x(t) has the Z transform of X(z) and lim_{z→∞} X(z) exists, then x(0) = lim_{z→∞} X(z): Good for checking the correctness of a Z transform. Why?
- Final value theorem (FVT): Let the Z transform of x(t) be X(z). If all the poles of X(z) lie inside the unit circle (one simple pole at z = 1 is fine), then

$$\lim_{k\to\infty} x(k) = \lim_{z\to 1} (1-z^{-1})X(z)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The pole condition is used to ensure that x(k) remain finite.
 Poles/zeros of X(z)

Pole and zeros in the z plane

Given a z-transform

$$X(z) = \frac{b_0 z^m + b_1 z^{m-1} + \dots + b_m}{z^n + a_1 z^{n-1} + \dots + a_n}, \quad m \le n$$

Write it in the pole-zero form

$$X(z) = \frac{b_0(z - z_1)(z - z_2)\cdots(z - z_m)}{(z - p_1)(z - p_2)\cdots(z - p_n)}, \quad m \le n$$

> poles: p_i 's, zeros: z_i 's

- Poles/roles determine the characteristics of the x(k).
- Another way of writing it using z^{-1} : convert it to the expression using z

Example (sinusoid)

▲ロト ▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

Proof

・ロト・個ト・モト・モー うへの

The Inverse Z transform

The Z transformation serves the same role for DT control that the Laplace transform serves for CT control.

- Inverse z transform: Z⁻¹: finding x(kT) or x(k) given a X(z).
- Inverse z transform only gives the time sequence at the sampling instants: It gives a unique x(k) but not a unique x(t).
- Different x(t) can have the same x(kT). Later we will talk about in what cases you can recover the exact x(t).
- Four methods: direct division, partial fraction expansion, inversion integral, and Matlab/computer tool.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Direct division

Expand X(z) into an infinite power series of z^{-1} .

From the definition of z transform $X(z) = \sum_{k=0}^{\infty} x(kT) z^{-k} = x(0) + x(1T) z^{-1} + x(2T) z^{-2} + \cdots$

- Useful for finding the first few elements of x(k) or when you can't find the closed-form solution
- Arrange the denominator and the numerator such that they are in increasing powers of z^{-1} .

• Calculate the division

Example:
$$X(z) = \frac{10z+5}{(z-1)(z-0.2)}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Partial-fraction-expansion approach

- Similar techniques used in Laplace transform
- Decompose X(z) into sum of terms that are easily recognizable in the table of Z transform.
- Expand X(z) or X(z)/z, depending on whether X(z) has any zeros at 0
 - make sure that the numerator is a lower order polynomial than the denominator.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $X(z) = \frac{3z^2+2}{z^2+z+1}$

Procedures

Consider

$$X(z) = \frac{b_0 z^m + b_1 z^{m-1} + \dots + b_m}{z^n + a_1 z^{n-1} + \dots + a_n}, \quad m \le n$$

Write it in the pole-zero form

$$X(z) = \frac{b_0 z^m + b_1 z^{m-1} + \dots + b_m}{(z - p_1)(z - p_2) \cdots (z - p_n)}, \quad m \le n$$

• Suppose that $b_m = 0$ and all the poles are of simple order: Expand X(z)/z into

$$\frac{X(z)}{z} = \frac{a_1}{z-p_1} + \dots + \frac{a_n}{z-p_n}$$

where

$$a_{i} = \left[(z - p_{i}) \frac{X(z)}{z} \right]_{z = p_{i}}$$

$$X(z) = \frac{a_1 z}{z - p_1} + \dots + \frac{a_n z}{z - p_n}$$
$$Z^{-1}(X(z)) = Z^{-1}\left(\frac{a_1 z}{z - p_1}\right) + \dots + Z^{-1}\left(\frac{a_n z}{z - p_n}\right)$$
$$=$$
$$=$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Multiple poles

Say

$$\frac{X(z)}{z} = \frac{c_1}{(z-p_1)^2} + \frac{c_2}{(z-p_1)} + \cdots$$

Then the coefficients are determined as

$$c_1 = \left[(z - p_1)^2 \frac{X(z)}{z} \right]_{z = p_1}$$
$$c_2 = \left\{ \frac{d}{dz} \left[(z - p_1)^2 \frac{X(z)}{z} \right] \right\}_{z = p_1}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Table of z tranforms

TABLE 3.1 SOME COMMON z-TRANSFORM PAIRS

Sequence	Transform	
1. δ[n]	1	
2. u[n]	$\frac{1}{1-z^{-1}}$	
3. $-u[-n-1]$	$\frac{1}{1-z^{-1}}$	
 δ[n - m] 	z ^{-m}	
5. a ⁿ u[n]	$\frac{1}{1-az^{-1}}$	
6. $-a^n u[-n-1]$	$\frac{1}{1-az^{-1}}$	
7. na ⁿ u[n]	$\frac{az^{-1}}{(1-az^{-1})^2}$	
8. $-na^{n}u[-n-1]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	
9. $[\cos \omega_0 n] u[n]$	$\frac{1 - [\cos \omega_0] z^{-1}}{1 - [2 \cos \omega_0] z^{-1} + z^{-2}}$	
10. $[\sin \omega_0 n] u[n]$	$\frac{[\sin \omega_0]z^{-1}}{1 - [2\cos \omega_0]z^{-1} + z^{-2}}$	
11. $[r^n \cos \omega_0 n] u[n]$	$\frac{1 - [r \cos \omega_0] z^{-1}}{1 - [2r \cos \omega_0] z^{-1} + r^2 z^{-2}}$	
12. $[r^n \sin \omega_0 n] u[n]$	$\frac{[r\sin\omega_0]z^{-1}}{1-[2r\cos\omega_0]z^{-1}+r^2z^{-2}}$	
13. $\begin{cases} a^n, & 0 \le n \le N-1, \\ 0, & \text{otherwise} \end{cases}$	$\frac{1 - a^N z^{-N}}{1 - a z^{-1}}$	

Example:
$$X(z) = \frac{2z^3 + z}{(z-2)^2(z-1)}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Example (complex poles): $X(z) = \frac{z^3}{(z-1)(2z^2-2z+1)}$

Inversion integral method

$$\mathcal{Z}^{-1}[X(z)] = x(kT) = x(k) = \frac{1}{2\pi j} \oint_C X(z) z^{k-1} dz, k = 0, 1, \cdots$$

where C is a circle with its center at the origin of the z plane such that all poles of $X(z)z^{k-1}$ are inside it.

- Note that for each k, the integral may be different.
- Using theory of complex variables, we have

$$\begin{aligned} x(kT) &= x(k) = K_1 + K_2 + \dots + K_m \\ &= \sum_{i=1}^m [\text{residue of } X(z)z^{k-1} \text{ at pole } z = z_i \text{ of } X(z)z^{k-1}] \end{aligned}$$

m is the number of poles (a pole with multiple orders is counted as one pole.)

Simple pole at $z = z_i$: $K_i = \lim_{z \to z_i} (z - z_i) X(z) z^{k-1}$

A pole
$$z_j$$
 of order q :

$$K_j = \frac{1}{(q-1)!} \lim_{z \to z_j} \frac{d^{q-1}}{dz^{q-1}} [(z-z_j)^q X(z) z^{k-1}]$$

The number of poles of $X(z)z^{k-1}$ may depend on k. • X(z) has one or more zeros at 0: solve for any k in closed-loop form, i.e., solve for all k.

• X(z) has no zeros at 0 or has poles at 0: for different k's, you will have different poles, then you need to solve one k by another

Example:
$$X(z) = \frac{z^{-2}}{(1-z^{-1})^3}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Example:
$$X(z) = \frac{10}{(z-1)(z-2)}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Conversion diagram

Solving difference equation (DE)

LTI system by linear DE:

 $x(k)+a_1x(k-1)+\cdots+a_nx(k-n) = b_0u(k)+b_1u(k-1)+\cdots+b_nu(k-n)$

- Solve it by computer, if you know the coefficients and required values
- **\triangleright** Z-transform allows us to calculate the closed-form solution to x(k).
- Take the Z-transform and apply the shift theorem (forward/backward). Then apply inverse Z transform techniques to get to the time domain.

$$\mathcal{Z}(x(t-nT))=z^{-n}X(z)$$
 backward

$$\mathcal{Z}(x(t+nT)) = z^n(X(z) - \sum_{k=0}^{n-1} x(kT)z^{-k})$$
 forward

▲□▶▲□▶▲□▶▲□▶ = のへの

$$Z(x(k) + a_1x(k-1) + \dots + a_nx(k-n)) = X(z) + a_1z^{-1}X(z) + \dots + a_nz^{-n}X(z)$$

$$Z(b_0u(k) + b_1u(k-1) + \dots + b_nu(k-n)) =$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶