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Abstract

This paper presents a distributed event-triggered unadjusted Langevin algorithm (DETULA) to address the Bayesian learning
problem. We consider a set of networked learning agents who have access to their own independently distributed data sets. The
objective of each agent is to reconstruct the global posterior of the unknown model parameters through local learning along
with local interaction with neighboring agents. We propose an event-triggered communication mechanism for a distributed
Langevin algorithm to limit the inter-agent interactions and thus reduce the communication overhead. We provide conditions
on the algorithm step sizes and the triggering threshold to ensure mean-square consensus of the agents’ parameter estimates
and convergence of the estimates to the global posterior as if the data sets were aggregated at a central location. A major im-
provement of our result over previous studies is the establishment of said consensus without imposing any bounded restriction
of the gradient of the objective function. Additionally, we establish probabilistic guarantees to prevent consecutive triggering
by any agent while maintaining the same rate of convergence as in the case without event-triggering. We demonstrate the
DETULA using distributed supervised-learning problems. Our results indicate that the agents successfully recover the global
posterior by periodically sharing their samples with neighbors.
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1 Introduction

Bayesian learning is a principled approach to estimating model parameters in machine learning problems. Motivations
for pursuing Bayesian learning are to avoid overfitting and to provide an uncertainty measure of the model parameter
estimates [1]. Compared with Maximum A Posteriori and Maximum Likelihood estimation, Bayesian approach
captures the epistemic uncertainties and estimates the posterior distribution of model parameters given a data set
and a prior distribution.

An analytical solution to the exact posterior is often intractable. Therefore, one needs to resort to numerical methods
such as Markov Chain Monte Carlo (MCMC) methods. MCMC methods approximate the posterior distribution using
samples from a Markov chain with the posterior being the equilibrium distribution [1]. A class of gradient based
MCMC schemes, known as Hamiltonian Monte Carlo (HMC), is derived from Hamiltonian dynamics [37]. Examples
of HMC methods include Langevin algorithms [4, 6, 8, 9, 13–15] and higher-order HMC algorithms [29,30,33,34,36].
Stochastic gradient-based Langevin algorithm [47] and its variations have been widely used for large scale data
applications.

The aforementioned MCMC approaches are applicable when all available training data is accessible to a single
centralized entity. However in distributed situations where dispersed networked agents cannot share training data,
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distributed Bayesian learning algorithms must be used to fuse information from the distributed data sets. Parallel
MCMC methods [18,20,21,49] have been proposed to tackle the distributed data problem in a master-slave commu-
nication architecture, where a central node aggregates samples from Markov chains on individual computing nodes.
Alternatively, distributed Bayesian learning schemes [19,25,26,39] generalize the communication topology considered
in distributed and parallel MCMC schemes to any connected undirected graph.

The existing distributed Bayesian learning algorithms require constant communication between the agents. In this
paper, we demonstrate that such constant communication can be reduced by introducing an event-triggering mecha-
nism for inter-agent communication. The idea of event-triggered communication has been widely used in distributed
control applications [10, 17, 20] and in distributed optimization [11, 24, 51]. These papers focus on continuous-time,
deterministic optimization algorithms for convex problems. More recently, event-driven stochastic gradient descent
algorithms for non-convex problems have been considered in [16, 43]. To reduce the communication overhead asso-
ciated with the existing distributed Bayesian learning schemes [19, 25, 39], we propose a distributed event-triggered
unadjusted Langevin algorithm (DETULA). The proposed algorithm does not require inter-agent communication at
every iteration. Instead, it enables each agent to determine whether communication is necessary at each iteration.
The key idea behind the triggering mechanism is to communicate only if the difference between the previously com-
municated estimate and the current estimate is above a triggering threshold. The DETULA employs diminishing
sequences for the triggering threshold and for the step sizes of its gradient and consensus terms. Assuming that
the target posterior distribution satisfies a log-Sobolev inequality (LSI) [18], we provide conditions on the trigger-
ing threshold and the step sizes that guarantee consensus in mean-square and convergence to the target posterior.
Empirical results from a Gaussian mixture example and a logistic regression example show that the DETULA per-
formance is similar to centrally trained models with significantly reduced inter-agent communication compared to
existing distributed Bayesian learning algorithms.

Related literature: There has been active research on analyzing convergence properties of the unadjusted Langevin
algorithm (ULA). The unadjusted Langevin algorithm (ULA) is obtained by discretizing the continuous time Lan-
genvin dynamics [28] and ignoring any rejection-acceptance criteria. Continuous time Langevin dynamics is shown
to be the steepest descent flow of the KL-divergence with respect to the Wasserstein metric [22, 46, 48] and con-
verge exponentially to the target posterior under a LSI assumption on the posterior distribution [38, 46, 48]. For
the ULA, [48] shows that a bias exists for any arbitrarily small (fixed) step size. For strongly log-concave posterior
distributions, convergence properties of the ULA are discussed in [4, 8, 9, 13, 14, 48]. Analysis of ULA without the
log-concave target distribution often requires additional assumption on the negative log of the posterior distribution,
including dissipative property [3, 35, 41, 50, 52], relaxed dissipativity conditions [3, 52], contractivity condition [32],
or limiting the non-convexity to a local region [5, 31]. In [31, 44, 50], computational efficiency of sampling algorithm
compared to optimization methods is reported in the nonconvex setting. The convergence is shown to be polynomial
in dimension and error tolerance [5, 32,35].

Recently, distributed ULA (DULA) and Bayesian learning algorithms have been proposed in [19, 25, 26, 39]. [26]
introduces a distributed learning algorithm that projects the local posterior onto an allowed family of posteriors and
then performs consensus based on the projected posterior. In [25], convergence of distributed Lagenvin dynamics
with strongly log-concave posteriors is investigated. A DULA for non-log-concave posterior distributions is analyzed
in [39]. In [19], distributed stochastic gradient Langevin dynamics and HMC methods for strongly log-concave
posterior distributions are studied. These algorithms all require inter-agent communication at each iteration.

Contribution: The major contribution of this paper is to introduce the first-ever distributed Bayesian learning
algorithm with an event-triggering mechanism for significantly reduced communication. Theoretical convergence
properties are established and linked to triggering-threshold tuning parameters applied within and across dispersed
agents under the assumption that the target distribution satisfies a log-Sobolev inequality. Compared with the prior
work in [39], our analysis successfully removes the bounded gradient assumption. The event-triggering mechanism and
the removal of the bounded gradient assumption introduce nontrivial complexity in the analysis of both consensus
and convergence to the target posterior. To bound the error terms induced by the triggering mechanism, we design
the triggering threshold as a diminishing sequence and establish a lower bound for its decay rate. Without the
bounded gradient assumption, the consensus is established by analyzing the coupled consensus error and average
dynamics, whereas in [39], the consensus is established independently of the average dynamics. In addition, our
numerical results demonstrate how the event-triggering mechanism reduces inter-agent communication (by more
than 50%) while maintaining inference performance. Indeed, our result shows that the triggering threshold can be
selected to prevent consecutive triggering events for the same agent on expectation.
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Notation: Let R
n×m denote the set of n × m real matrices. For a vector φ, φi is the i-th entry of φ. An n × n

identity matrix is denoted as In and 1n denotes an n-dimensional vector of all ones. For p ∈ [1, ∞], the p-norm of
a vector x is denoted as ‖x‖p. For matrices A ∈ R

m×n and B ∈ R
p×q, A ⊗ B ∈ R

mp×nq denotes their Kronecker

product. For a graph G (V, E) of order n, V , {v1, . . . , vn} represents the agents and the inter-agent communication

links are represented as E , {e1, . . . , eℓ} ⊆ V × V. Let A = [ai,j ] ∈ R
n×n be the adjacency matrix with entries of

ai,j = 1 if (vi, vj) ∈ E and zero otherwise. Let Ni be the set of neighbors of agent i in G (V, E), i.e., Ni = {j | ai,j =
1, j = 1, · · · , n}. Define ∆ = diag (A1n) as the n-degree matrix and L = ∆−A as the graph Laplacian. Denote by
N (µ,M) the normal distribution with a mean µ and a covariance matrix M .

2 Problem formulation

We consider a connected network of n agents, each with a randomly distributed set of mi data items, Xi =
{
x
j
i

}j=mi

j=1
,

∀ i = 1, . . . , n, where x
j
i ∈ R

dx is the j-th data element in a set of mi data items available to the i-th agent. Denote
by X the entire data set {X1, . . . ,Xn}. Let w ∈ R

dw be the parameter vector associated with the model and p(w)
the prior associated with the model parameters. The global posterior distribution of w given the n independent data
sets distributed among the agents is expressed as

p(w|X) ∝ p(w)
n∏

i=1

p(Xi|w) =
n∏

i=1

p(Xi|w)p (w)
1
n

︸ ︷︷ ︸
pseudo local posterior

. (1)

For the ease of notation, we define p(w|Xi) as the pseudo local posterior given by

p(w|Xi) = p(Xi|w)p (w)
1
n . (2)

Then the global posterior p(w|X) can be written as the product of pseudo local posteriors as

p(w|X) ∝
n∏

i=1

p(w|Xi). (3)

This paper is aimed at developing a communication efficient method for collaborative Bayesian learning from large
scale data sets distributed among a networked set of agents as a solution to the numerous issues associated with
the point estimation schemes. In particular, we present an event-triggered, distributed version of the unadjusted
Langevin algorithm to distributively obtain samples from the global posterior p(w|X). Compared to the existing
distributed Bayesian learning schemes [19,25,26,39], the event-triggered communication scheme significantly reduces
the inter-agent communication. We also show that by tuning the triggering threshold, each agent will not triggered
at any two consecutive time steps with high probability.

3 Centralized unadjusted Langevin algorithm

In this section, we briefly review a centralized unadjusted Langevin algorithm (CULA) for addressing the learning
problem in Section 2. The CULA assumes that all the data sets are collected at a central server. The Langevin algo-
rithm is a well-known class of Monte Carlo sampling algorithms based on the gradient of the negative log-likelihood.
However, like any Bayesian technique, a major issue is that the normalizing factor becomes computationally in-
tractable. To that end, an energy function E is defined [12,27,37] as follows

p(w|X) ∝ exp(−E(w,X)). (4)

It then follows from Bayes rule that

E(w,X) = − log (p(X|w))− log (p (w)) . (5)
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Therefore, computing E(w,X) does not require the normalization constant in the posterior p(w|X). The global
posterior distribution, i.e., the target distribution is denoted as p∗. It then follows from (4) that

p∗(·) = exp
(
− E ( · ,X) + C

)
, (6)

where C is the normalizing constant.

Thereafter, samples in CULA are drawn at each time step as

w(k + 1) = w(k)− αk∇E(w(k),X) +
√
2αkv(k) (7)

where w(k) is the sample at the k-th time step, αk is a time-varying step-size of the algorithm, and v(k) ∼
N (0, Idw

), ∀k ≥ 0 is the additive noise. In essence, (7) performs a gradient ascent on p(w|X) with the additive
noise v to effectively search the sample space. Substituting (5) in (7) yields

w(k + 1) = w(k)− αk∇E(w(k),X) +
√
2αkv(k). (8)

The algorithm (8) is a discrete time approximation of the continuous time Langevin dynamics given by the following
Stochastic Differential Equation (SDE) known as the Langevin equation [28]:

dw̄∗(t) = −∇E(w̄∗(t),X)dt+
√
2dB(t), (9)

where B(t) is a dw-dimensional Brownian motion.

Continuous-time Langevin dynamics (9) have been shown to exponentially converge to p∗(·) for various classes of
distributions [22,42,48]. Convergence properties of the discrete algorithm (8) have also been widely studied for log-
concave target distributions [4,6,9,13–15] and without the strong log-concavity assumption on target distributions [3,
5, 31,32,35,41,50,52].

4 The proposed DETULA

In practice, due to network limitations, computational constraints, data privacy restrictions, and other logistical
constraints, the learning data set X, in its entirety, is often unavailable to a single central server for processing.
Such scenarios necessitate the implementation of distributed learning algorithms. To that effect recent studies such
as [19, 25, 39] have extended the Langevin algorithm to a distributed setting. Particularly, the distributed ULA
(DULA) [39] takes the following form:

wi(k + 1) = wi(k)− βk

n∑

j=1

ai,j (wi(k)−wj(k))− αkn∇Ei(wi(k),Xi) +
√
2αkvi(k), (10)

where ai,j denotes the entries of the adjacency matrix corresponding to the communication network G (V, E), βk

is the consensus step-size, the additive noise vi(k) satisfies vi(k) ∼ N (0, nIdw
), ∀i ∈ {1, . . . , n} and Ei( · ,Xi) =

− log
(
p(Xi| · )

)
− log

(
p ( · )

)
. In (10) the learning occurs over a distributed network of agents, each having a local

sample wi(k) at the k-th time step and with access to a local data set Xi. Restricted information sharing via term∑n
j=1 ai,j(wi(k) − wj(k)) is performed to ensure consensus among agents. However, this leads to a large number

of communication at every time step. To reduce the communication overhead for consensus among agents, while
still guaranteeing convergence to the target posterior, we propose the following distributed ULA algorithm with an
event-triggering mechanism:

wi(k + 1) = wi(k)− βk

n∑

j=1

ai,j (ŵi(k)− ŵj(k))− αkn∇Ei(wi(k),Xi) +
√
2αkvi(k), (11)

In (11), for i = 1, . . . , n, the piece-wise constant signal ŵi(k), defined as

ŵi(k) = wi(t
i
q), ∀ k ∈

{
tiq, t

i
q + 1, . . . , tiq+1 − 1

}
,
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denotes agent i’s last broadcast sample. The set
{
tiq : q = 0, 1, . . .

}
with ti0 = 0 denotes triggering instants, i.e., the

time instants when agent i broadcasts wi to its neighbors.

Define w(k) ,
[
w1(k)

⊤ , . . . , wn(k)
⊤
]⊤

∈ R
ndw , ŵ(k) ,

[
ŵ1(k)

⊤ , . . . , ŵn(k)
⊤
]⊤

∈ R
ndw , v(k) ,

[
v1(k)

⊤ , . . . , vn(k)
⊤
]⊤

∈ R
ndw and ∇̂E(w(k),X) ,

[
∇E1(w1(k),X1)(k)

⊤ , . . . , ∇En(wn(k),Xn)(k)
⊤
]⊤

∈ R
ndw .

Now (11) can be written in a vectorized form as

w(k + 1) = w(k)− βk (L ⊗ Idw
) ŵ(k)− αkn∇̂E(w(k),X) +

√
2αkv(k), (12)

where L is the network Laplacian. Ignoring the additive noise vk, (12) can be considered a distributed optimization
algorithm which seeks to minimize E(w,X) defined as

E(w,X) ,
n∑

i=1

Ei(w,Xi). (13)

Define the network weight-matrix Wk = (In − βkL) and e(k) = w(k)− ŵ(k). We obtain from (12)

w(k + 1) = (Wk ⊗ Idw
)w(k)− αkn∇̂E(w(k),X) +

√
2αkv(k) + βk (L ⊗ Idw

) e(k), (14)

Let ei(k) = wi(k) − ŵi(k), and em(k) be a tuning parameter. The triggering event instants for any i-th agent are
designed as

tiq+1 = inf

{
k > tiq

∣∣∣∣ ‖ei(k)‖22 > em(k)

}
. (15)

where the selection scheme for em(k) is discussed in detail in Section 5. The index k in the paranthesis of em(k)
denotes that it could be a function of time step to allow for more flexibility. As we shall see later in Condition 2, the
time index dependence of the threshold em(k) shall be required to guarantee consensus.

For implementation, agent i stores its most recent broadcast sample in ŵ
(i)
i (k), and the most recent sample received

from neighbor j in ŵ
(i)
j (k). Note that ŵ

(i)
j (k) is equivalent to ŵj(k) in (10) and that ŵ

(j)
i (k) = ŵ

(l)
i (k), ∀j, l ∈ Ni.

Then the triggering mechanism for agent i (i = 1, . . . , n) at time step k is as follows:

If ‖ei(k)‖22 > em(k), then agent i sets ŵ
(i)
i (k) = wi(k) and broadcasts wi(k) to its neighboring agents. Otherwise,

agent i does not communicate and ŵ
(i)
i (k) = ŵ

(i)
i (k − 1).

To compute ei(k), agent i only makes use of its current sample wi(k) and the past broadcast sample ŵ
(i)
i (k), no

communication with other agents is needed. The pseudocode of the proposed DETULA is given in Algorithm 1.
Additional details on the design parameters of the algorithm are discussed in Section 5. In particular, em(k) must
be chosen carefully. Increasing em(k) results in less communication, but consensus and convergence could be com-
promised if em(k) is too large. As em(k) → 0, the DETULA approaches the DULA that communicates at every
iteration. The exact form of em(k) and associated bounds are established in Condition 2 in Section 5. Mathematical
guarantees on the triggering frequency are established in Theorem 3.

5 Main results

We address the two major objectives of our algorithm in this section, namely, consensus and convergence to target
distribution p∗. For the distributed approach to be reliable, we first ensure consensus among the agents, and thereafter
convergence to the global posterior distribution. Finally, we include some analysis on the frequency of the event-
triggering and conditions to ensure meaningful reduction in communication.
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Algorithm 1 Distributed Event-Triggered ULA (DETULA)

1: Input : (i) a according to Condition 1(i)
(ii) b according to Condition 1(ii),
(iii) µe satisfying (125),
(iv) δ1 and δ2 according to Condition 1(iii)
(v) δ3 according to Condition 2, and optionally Condition 3 (or simply following (36)).

2: Initialization : w(0) =
[
w⊤

1 (0) . . . w⊤
n (0)

]⊤

3: for i = 1 to n do
4: Broadcast wi(0) & set ŵ

(i)
i (0) = wi(0)

5: Receive wj(0) & set ŵ
(i)
j (0) = wj(0), ∀j ∈ Ni.

6: Compute ∇Ei(wi(0), ξi(0))
7: Sample vi(0) ∼ N (0, nIdw

)

8: Update wi(1) = wi(0)− α0∇Ei(wi(0),i )− β0

n∑

j=1

aij

(
ŵ

(i)
i (0)− ŵ

(i)
j (0)

)
+
√
2α0vi(0)

9: end for
10: for k ≥ 0 do
11: for i = 1 to n do
12: Sample vi(k) ∼ N (0, nIdw

)
13: Compute ∇Ei (wi(k),Xi)

14: Compute ei(k) = wi(k)− ŵ
(i)
i (k)

15: if ‖ei(k)‖22 > em(k) then

16: Broadcast wi(k) & set ŵ
(i)
i (k) = wi(k)

17: else
18: Set ŵ

(i)
i (k) = ŵ

(i)
i (k − 1)

19: end if
20: if any wj(k), j ∈ Ni received then

21: Set ŵ
(i)
j (k) = wj(k)

22: else
23: Set ŵ

(i)
j (k) = ŵ

(i)
j (k − 1)

24: end if

25: Update wi(k + 1) = wi(k)− αk ∇Ei (wi(k),Xi)− βk

n∑

j=1

aij

(
ŵ

(i)
i (k)− ŵ

(i)
j (k)

)
+

√
2αkvi(k)

26: end for
27: end for

5.1 Consensus in mean-square expectation

Define the average-consensus error as

w̃(k) =

(
Indw

− 1

n
1n1

⊤
n ⊗ Idw

)
w(k). (16)

Our first result shows that the mean-square expectation of w̃(k) in (16) is decreasing at the rate O
(

1
(k+1)δ2−2δ1

)

when operated within certain limits of event-triggering. Our consensus result relies on the following commonly made
assumptions.

Assumption 1 The interaction topology of n networked agents is given as a connected undirected graph G (V, E).

For the connected undirected graph G (V, E), the graph Laplacian L is a positive semi-definite matrix with one
eigenvalue at 0 corresponding to the eigenvector 1n. Furthermore, it follows from Lemma 3 in [21] that for all

x ∈ R
n, such that 1

T
nx = 0, we have x

TL (L)+ x = x
T
x, where (·)+ denoted the pseudo-inverse. Let Fk denotes a

filtration generated by the sequence {w0, . . . ,wk}, i.e., E[vk |Fk] = 0.
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Assumption 2 For all i = {1, 2, . . . , n}, the individual gradients ∇Ei : R
dw 7→ R

dw are Lipschitz continuous with
Lipschitz constant Li > 0, i.e., ∀ wa,wb ∈ R

dw ,

‖∇Ei(wa,Xi)−∇Ei(wb,Xi)‖2 ≤ Li‖wa −wb‖2. (17)

As a result of (17) we have ∇E : Rdw 7→ R
dw and ∇̂E : Rndw 7→ R

ndw are both Lipschitz continuous with Lipschitz
constant L > 0 and L̄ > 0 respectively. Hence, ∀ wa,wb ∈ R

dw and ∀ wa,wb ∈ R
ndw we respectively have

‖∇E(wa,X)−∇E(wb,X)‖2 ≤ L̄‖wa −wb‖2,
‖∇̂E(wa,X)− ∇̂E(wb,X)‖2 ≤ L‖wa −wb‖2,

(18)

where L̄ ≤ max
i={1,2,...,n}

nLi and L ≤ max
i={1,2,...,n}

Li.

Next, we list the essential conditions that need to be fulfilled for successful operation of the proposed DETULA
algorithm.

Condition 1 Sequences {αk} and {βk} are selected as

αk ,
a

(k + 1)δ2
and βk ,

b

(k + 1)δ1
, (19)

where the positive constants a, b, δ1 and δ2 satisfy:

(i) a < 1
nL

and φ(a) < 0 where φ(a) is given in (78),

(ii) anL
λ2(L) < b < 1

λ2(L) and b
1−bλ2(L) <

λ2(L)
d2
m

,

(iii) 1
2 + δ1 < δ2 < 1.

Condition 1(iii) puts restrictions on the decay rates of αk and βk, where the consensus gain βk decreases at a slower
rate than the gradient step-size αk. For sequences {αk} and {βk} that satisfy Condition 1, αk, βk and β2

k are not
summable sequences while αk is square-summable. Additionally, we have proved in Section 8.1 that there always
exists ā ∈ (0, 1) such that for all a < ā we have φ(a) < 0, i.e., for small enough values of a, φ(a) < 0 can always be
ensured.

Condition 2 The triggering threshold em(k) in (15) is chosen as

em(k) =
µe

(k + 1)δ3
, (20)

where µe = em(0) is a tuning parameter of the algorithm and δ3 satisfies 0 < 1− δ2 < δ3.

Condition 2 gives a suitable way to choose the error threshold before event is triggered. em(k) signifies the limit up
to which the error (in the estimation of the samples of its neighbors) an agent is allowed to incur before triggering
(i.e., sharing information with its neighbors) without compromising consensus. Furthermore, we design a diminishing
threshold for asymptotic consensus.

Theorem 1 Given Conditions 1 and 2 along with Assumptions 1 - 2, the average-consensus error w̃ for the DE-
TULA given in Algorithm 1 satisfies

E
[
‖w̃k+1‖22

]
≤ W5

exp (W1(k + 1)1−δ1)
+

W2µe

(k + 1)δ3
+

W3Cw̄

(k + 1)2δ2−2δ1
+

W4

(k + 1)δ2−2δ1
, (21)

where W2, W3, W4 and W5 are positive constants defined in (62)– (65), respectively.

Detailed proof of Theorem 1 can be found in Section 8.1. The important conclusion from Theorem 1 is the guarantee
of consensus on mean-square expectation with increasing time steps. Since the first term in (21) decays exponentially,
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we expect E
[
‖w̃(k + 1)‖22

]
∝ (k+1)−δp for large k, where δp = min{δ3, δ2 − 2δ1}. Moreover, if δ3 ≥ δ2 − 2δ1 (which

is possible to attain within the restrictions imposed on δ3), then E
[
‖w̃(k + 1)‖22

]
∝ (k + 1)−(δ2−2δ1) which is the

same as without event-triggering. Additionally, we observe from (21) that a larger µe, although allows for higher
accumulation of the error and thus less communications, results in a larger upper bound of the consensus error.

5.2 Average Langevin dynamics

With the average consensus result in Theorem 1, we proceed to analyze the average dynamics from the DETULA
in (14). Let w̄(k) = 1

n

∑n
i=1 wi(k) and v̄(k) = 1

n

∑n
i=1 vi(k). It follows that

w̄(k + 1) = w̄(k)− αk

n∑

i=1

∇Ei (wi(k),Xi) +
√
2αkv̄(k). (22)

Because vi(k)’s are independent and satisfy vi(k) ∼ N (0, nIdw
), v̄(k) satisfies v̄(k) ∼ N (0, Idw

). Define

ζ(w̄(k), w̃(k)) ,

n∑

i=1

(
∇Ei (w̄(k) + w̃i(k),Xi)−∇Ei (w̄(k),Xi)

)
, (23)

where w̃i(k) , wi(k) − w̄(k). Also, from (13) that
∑n

i=1 ∇Ei (w̄(k),Xi) = ∇E (w̄(k),X). Therefore, we can
rewrite (22) as

w̄(k + 1) = w̄(k)− αk∇E (w̄(k),X)− αkζ(w̄(k), w̃k) +
√
2αkv̄(k). (24)

Missing from the CULA (7), the ζ term in (24) represents the effect due to the consensus error w̃(k). If w̃(k) = 0,
the ζ term becomes zero.

To analyze the convergence of the distribution of w̄(k), we convert (24) to a continuous time system (denoted by t)
that yields the same distribution of w̄ at the discrete time step k, k ≥ 0. Towards this end, we define a continuous

time tk =
∑k−1

j=0 αj , which corresponds to the k-th time step in the discrete time system in (24). We now rewrite (24)
as

w̄(tk+1) = w̄(tk)− αk∇E (w̄(tk),X)− αkζ(w̄(tk), w̃tk) +
√
2
(
B(tk+1)−B(tk)

)
, (25)

which is further represented as a SDE in continuous time for t ∈ [tk, tk+1), given by

dw̄(t) = −
(
∇E (w̄(tk),X)− ζ(w̄(tk), ω̃(tk))

)
dt+

√
2dB(t), (26)

where we set ω̃(tk) = w̃(k), ∀t ∈ [tk, tk+1) for any k ≥ 0. Since the gradient terms in (26) are constant for the entire
interval t ∈ [tk, tk+1), (26) can be integrated within [tk, tk+1) to give exactly (25). With the same initial distribution
of w̄, the distributions of w̄ in (25) and (26) are the same at the discrete time instants tk, ∀k ≥ 0.

5.3 Convergence to p∗(·)

Let w̄(t) in (26) admit a probability distribution pt(w̄) for tk ≤ t < tk+1. Our objective is to prove ptk(w̄) → p∗ as
k → ∞. Motivated by [5, 31, 46, 48], we analyze (26) using the KL-divergence of pt(w̄) to the target distribution p∗

as a Lyapunov functional. Denote such KL divergence by F (pt(w̄)), which is given by

F (pt(w̄)) =

∫
pt(w̄) log

(
pt(w̄)

p∗(w̄)

)
dw̄. (27)

8



Note that F (pt(w̄)) ≥ 0 and F (pt(w̄)) = 0 if and only if pt = p∗. Here, we introduce G : Rndw ×R

∑
i
midx 7→ R, an

aggregate potential function of local variables wi(k) and local data Xi

G(wk,X) ,

n∑

i=1

Ei (wi(k),Xi) , (28)

where w , [w⊤
1 , . . . ,w

⊤
n ]

⊤. From (28), G(w,X) is continuously differentiable and its gradient ∇G(w,X) ∈ R
ndw

is given as ∇G(w,X) = ∇̂E(w,X) (which is defined prior to (12)). It follows from (18) that ∇G : Rndw 7→ R
ndw is

Lipschitz continuous as well with a Lipschitz constant L, i.e., ∀wa, wb ∈ R
ndw

‖∇G(wa,X )−∇G(wb,X )‖2 ≤ L‖wa −wb‖2. (29)

Assumption 3 The target distribution p∗ satisfies a log-Sobolev inequality (LSI) defined as follows. For any smooth
function g satisfying

∫
g(w̄)p∗(w̄) dw̄ = 1, a constant ρU > 0 exists such that

∫
g(w̄) log g(w̄)p∗(w̄) dw̄ ≤ 1

2ρU

∫ ‖∇g(w̄)‖2
g(w̄)

p∗(w̄) dw̄, (30)

where ρU is the log-Sobolev constant.

If g(w̄) =
pt(w̄)

p∗(w̄)
, the inequality (30) becomes

F (pt(w̄)) , Ept(w̄)

[
log

(
pt(w̄)

p∗(w̄)

)]
≤ 1

2ρU
Ept(w̄)

[∥∥∥∥∇ log

(
pt(w̄)

p∗(w̄)

)∥∥∥∥
2

2

]
. (31)

The LSI assumption on the global posterior distribution is common in literature for analyzing Langevin dynamics
and algorithms, see e.g., [31,46]. LSI is satisfied by strongly log-concave p∗(w̄); namely, when − log p∗(w̄) is strongly
convex. However, LSI applies to a much broader class of probability measures, including many examples of non-log-
concave distributions. For example, in [31], it was shown that a posterior distribution that is strongly convex outside
of a bounded region, but nonconvex inside of it satisfies an LSI.

Theorem 2 below shows that F (pt(w̄)) converges to zero, indicating that pt(w̄) converges to the target distribution
p∗.

Theorem 2 Consider the DETULA given in Algorithm 1 under Assumptions 1 - 3 along with Conditions 1 and 2.
Suppose that the target distribution p∗ satisfies the LSI (30) with a constant ρU > 0, and has a bounded second
moment, i.e.,

∫
‖w̄‖22 p∗(w̄) dw̄ ≤ c1 for some bounded positive constant c1. Then for all initial distributions pt0(w̄)

satisfying F (pt0(w̄)) ≤ c2, we have

F (ptk+1
(w̄)) ≤ C̄

F1
exp

(
−ρU

k∑

ℓ=0

αℓ

)
+ µe

(
C̄

F2

(k + 1)δ2−2δ1
+

C̄
F3

(k + 1)δ3

)
+

C̄
F4

(k + 1)δ2−2δ1

+ C̄
F5

exp

(
− ρUa

1− δ2
(k + 1)1−δ2

)
,

(32)

where the positive constants C̄
F1

, C̄
F2

, C̄
F3

, C̄
F4

and C̄
F5

other associated parameters are defined in (100)-(103).

The constants c1 and c2 are assumed for establishing the result in Theorem 2 which appear in the constants C̄
F4

and C̄
F1

respectively. Existence of c2 has been proven for certain random initializations [31, 45] in the centralized

case. For our purpose, c2 can be derived for wi(0) ∼ N
(
w∗

i ,
1
Li
Idw

)
where w∗

i is a stationary point of Ei(·). Hence,

one may choose wi(0) ∼ N
(
w∗

i , σ
2
i Idw

)
, where w∗

i can be individually estimated by a few steps of local gradient
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descent on the local data by each agent and σ2
i > 0 is hueristically chosen. For all the experiments in this paper, we

use wi(0) ∼ N (0, σ2) which also produce satisfactory results.

The proof of Theorem 2 is given in Section 8.2. Since wi = w̄ + w̃i, the convergence results in Theorem 1 and 2
ensure that the distribution of wi converges to the target distribution p∗. The exponential decay rate of F (pt0(w̄)) is

similar to the results available in the literature, e.g., [4,31,46]. The second term in (32), µe

(
C̄

F2

(k+1)δ2−2δ1
+

C̄
F3

(k+1)δ3

)
,

is the contribution of the event-triggering scheme in the convergence of the DETULA algorithm. When µe = 0, we
recover the convergence of a DULA where the agents communicate at every iteration. The strength of the DETULA
lies in the guaranteed convergence as shown in Theorem 2 despite the reduced inter-agent communication.

Corollary 1 For the DETULA given in Algorithm 1 under Assumptions 1 - 2 and Conditions 1 and 2, it follows
from Theorem 2 that for any ǫ > 0, we have F (ptk(w̄)) ≤ ǫ, ∀k ≥ k∗, if µe is selected such that:

µe ≤
(
(k∗ + 1)δ2−2δ1

3C̄
F3

)
ǫ , (33)

where

k∗ = max

{(
1− δ2
aρU

log

(
3Q1

ǫ

)) 1
1−δ2

− 1,

(
3Q2

ǫ

) 1
δ2−2δ1

− 1

}
, (34)

and the constants Q1 and Q2 are given in (106) and (107), respectively.

Given a certain threshold ǫ for the KL divergence, Corollary 1 gives an estimate of the number of iterations k∗ and
the upper bound on µe to guarantee that the KL divergence is within the threshold ǫ after k∗ iterations.

5.4 Frequency of triggering

Since a key focus of this paper is the reduction in the communication of the DETULA algorithm via event triggering,
it is of interest to analyze the frequency of triggering for any particular agent. Ideally, we would like to avoid instances
of consecutive triggering by any agent. We next show that µe, δ1, δ2 and δ3 can be adjusted to prevent such occurences
on expectation. Specifically, we analyze the accumulation of the error ei right after a triggering event by the i-th
agent and establish the conditions on µe such that ei is sufficiently small on expectation to prevent a consecutive
triggering. Towards this end, we introduce additional conditions on δ1, δ2 and δ3.

Condition 3 δ1, δ2 and δ3 satisfy the following conditions:

δ3 ≤ δm, (35)

where δm = min{2δ1, δ1 + δ3, δ2 − δ1}

Note that the lower bound on δ3 given in Condition 2 is dictated by the consensus requirement of the algorithm
as too low δ3 will lead to higher accumulation of error due to estimation and if unchecked may lead to failure of
consensus. On the other hand, the upper bound on δ3 given in (35) is obtained from the frequency of event-triggering
analysis, as too high δ3 will likely cause consecutive event-triggering, marring the benefits of it in the first place.
Thus, we suggest choosing δ3 as

max{1− δ1, δ2 − 2δ1} < δ3 ≤ δm. (36)

Theorem 3 Consider the DETULA given in Algorithm 1 under Assumptions 1 - 3 with Conditions 1 - 3. Suppose

10



that kq is some arbitrary time step at which i-th agent is triggered, i.e., ei(kq) = 0, then we have

E[‖ei(kq + 1)‖22] ≤
ξq

(kq + 1)δm
, (37)

where ξq is given as in (120). Under the assumption that µe satisfies (125), the probability of triggering at kq + 1
for agent i satisfies

p

(
‖ei(kq + 1)‖22 ≥ µe

(kq + 2)δ3

)
≤ (kq + 2)δ3

(kq + 1)δm

(
c̄1
µe

+ c̄2

)
, (38)

where c̄1 and c̄2 are constants given in (121) and (122) respectively.

In effect, (38) in Theorem 3 gives an upper bound on the probability of any i-th agent triggering at consecutive
time instants. Thus, keeping this upper bound low enough by appropriately choosing the design parameters, we can
prevent consecutive triggering by any agent on expectation. This results in at least a 50% expected reduction in the
total communication as compared to the non-triggered DULA algorithm.

The coefficient
(kq+2)δ3

(kq+1)δm
on the right hand side of (38) drastically decays to δ3

δm
≤ 1 with increasing kq. In fact,

the larger is the difference in the powers, i.e., the greater is δm − δ3, the faster is the convergence of
(kq+2)δ3

(kq+1)δm
and

the smaller is the limiting value δ3
δm

. Our next objective is to adjust the term
(

c̄1
µe

+ c̄2

)
to be as low as possible

to reduce triggering. From (122) we note that c̄2 =
(1−bλ2(L))−1bd2

m

λ2(L) , where dm is the maximal number of neighbors

across all the agents. Thus, c̄2 ∝ d2m which means more number of individual connections of agents (i.e., more
neighbors) will increase chances of frequent triggering. This is intuitively expected as more neighbors would mean
higher accumulation of error from approximating the samples of all those neighbors. Also, note that c̄2 ∝ b, hence,
we can adjust the value of b to keep c̄2 sufficiently low. As for the term c̄1

µe
, it can be appropriately tuned to a suitably

low value by increasing µe with the minimum value of µe given by (125).

6 Numerical experiments

6.1 1D Gaussian toy problem

To demonstrate the proposed algorithm, we first use a 1D Gaussian toy problem, for which we can analytically
compute the posterior. We then make a comparison of the posterior approximated by our algorithm with the true
analytical posterior. Let

θ ∼ N (0, σ2
θ), (39)

xi|θ ∼ N (θ, σ2
x), i = 1, 2, . . . , N, (40)

where we use σθ = 10, θx = 0.1 and N = 100. The analytical expression for the posterior is given as

π = N
(
µp, σ

2
p

)
= N



∑N

i=1 xi

σ2
x

σ2
θ

+N
,

(
1

σ2
θ

+
N

σ2
x

)−1

 .

The entire data was distributed equally among 5 agents. The communication topology is a ring graph where each
agent communicates with two neighbors. The true value of θ is 12.22, while µp = 12.23 and σ2

p = 0.01. The estimation
error of the mean and the variance by DULA (µe = 0) and DETULA (µe = 0.001, δ3 = 0.16) are plotted in Figure 1,
which shows that the estimates converge to the true values. The values of other hyperparameters used are: a = 10−5,
b = 0.1443, δ1 = 0.08 and δ2 = 0.84.
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Fig. 1. Comparison of the absolute error between the (a) mean and (b) variance estimation by the agents and the analytical
solution. The plots show the average result for all the agents. For the DETULA, we obtain over 50% reduction in communication
compared to without event-triggering.

6.2 Gaussian mixture

We consider parameter inference of a Gaussian mixture with tied means [47]. The Gaussian mixture is given by

θ1 ∼ N (0, σ2
1) ; θ2 ∼ N (0, σ2

2) (41)

xi ∼
1

2
N (θ1, σ

2
x) +

1

2
N (θ1 + θ2, σ

2
x), (42)

where σ2
1 = 10, σ2

2 = 1, σ2
x = 2 and w , [θ1, θ2]

⊤ ∈ R
2. We draw 100 data samples xi from the model with θ1 = 0

and θ2 = 1. The 100 data samples were equally distributed among n agents, each receiving a set of 100
n

data samples.
The communication topology between the agents is a ring graph.

Monte Carlo simulations with 100 random trials were conducted for 100000 iterations. The samples from the DE-
TULA were compared with the non-triggered DULA (µe = 0) and an approximated true posterior distribution in
Figure 2(a). To compare the accuracy of our results, we used [2] to compute Wasserstein distances as a metric. The
Wasserstein distances were averaged over the 100 trials and the n agents involved. Note that the presented values of
Wasserstein distances (in Figures 3, 4; Tables 1, 2) are approximations because the target posterior itself is approx-
imated and because the algorithm [2] only produces rough estimates of the Wasserstein distances. The presented
values of Wasserstein distances are approximations since the target posterior itself is approximated. However, it
serves a good metric for comparison between the DULA and the DETULA performances.

We set αk = a
(γk+1)δ2

and βk = b
(γk+1)δ1

, where a = 0.2
2300.55 , b = 1.01

σmax(L) , δ1 = 1
6 , δ2 = 2

3 , γ = 1
230 for both DULA

and DETULA, and σmax(·) denotes the largest singular value. Here we use ‘γk’, instead of ‘k’ in the step sizes
for fine-tuning the step sizes to ensure numerical stability of the algorithm. Using a scale factor γ does not affect
the theoretical results provided in the main paper. The error bound in event-triggering of DETULA was chosen as

µe

(k+1)δ3
, with δ3 = 1

3 in all cases. Also, each agent used the full gradient from the batch of its corresponding data for

all the experiments in this section.

A visual comparison between the approximate target posterior and the estimated posteriors from the DETULA and
the DULA for one of the 5 agents is shown in Figure 2. To illustrate consensus, we randomly choose an agent as the
reference agent and define the consensus metric Cerr as the mean of the Wasserstein distances of the posteriors of
the remaining 4 agents from that of the reference agent averaged over all 100 random trials. Figure 3 demonstrates
the improvement of the consensus with increasing iterations. Further, a comparison of the performances of DULA
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and DETULA for 5 agents at different iterations (but keeping all other parameters same) is presented in Figure 4.
An overall improvement of the performance with increasing iterations is observed in all cases.
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Fig. 2. Comparison of the estimate of the posterior distribution constructed by agent 4 using the DETULA and the DULA with
5 total agents. (a) (Approximate) true posterior distribution (b) DETULA (µe = 0.3, b = 0.14) (c) DULA (µe = 0, b = 0.14).

0 2 4 6 8 10

Iterations 10
4

0.04

0.06

0.08

0.1

0.12

0.14

C
e
rr

e
=0

e
=0.1

e
=0.3

e
=0.5

9.4 9.6 9.8 10

Iterations 10
4

0.0332

0.0334

0.0336

0.0338

0.034

C
e
rr

Fig. 3. Comparison of the consensus metric Cerr of DULA (µe = 0) with DETULA (µe ∈ {0.1, 0.3, 0.5}) with 5 agents
at different iterations from 1000 to 100000 iterations, computed at every 500 iterations for b = 0.14. The inset shows the
magnified plot of Cerr for iterations from 95000 to 100000 computed at every 500 iterations.

Table 1 demonstrates the effect of µe on the triggering frequency and Wasserstein distance of the final samples. We
fixed n = 5 and performed the simulations for µe ∈ {0, 0.1, 0.3, 0.5} (where µe = 0 corresponds to non-triggered
DULA) in Table 1. We observe that the DETULA’s performance is on par with the DULA for a wide range of µe.
A clear benefit of the DETULA is its significant reduction in inter-agent communication. For example, inter-agent
communication can be reduced by 75% while minimal loss in estimation quality for µe = 0.5.

Next, we explore the effect of varying b in βk on triggering frequency in Table 2 for fixed µe = 0.3. A clear trend
of diminishing number of average communications between the agents is noted with decreasing value of b, thus
suggesting a reduction in triggering frequency with lower b values. This validates our results in (38) from Theorem 3.
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Fig. 4. Comparison of the performance of DULA (µe = 0) with DETULA (µe ∈ {0.1, 0.3, 0.5}) with 5 agents at different
iterations from 2000 to 100000 iterations, computed at every 500 iterations. The plotted Wdist values denote average over all
the 5 agents and all 100 random trials for b = 0.14.

(n = 5, b = 0.14) Wdist Ncomm PR

µe = 0 0.1771 100000 0%

µe = 0.1 0.1906 66669 33%

µe = 0.3 0.2190 37072 63%

µe = 0.5 0.2027 24735 75%

Table 1
Comparison of results from the DULA (µe = 0) and the DETULA (varying µe) with 5 agents. (Ncomm: Average number of
communications, PR: Percentage reduction in communication, Wdist: Average Wasserstein distances.)

(n = 5, µe = 0.3) Wdist Ncomm PR

b = 0.01 0.2256 37301 75%

b = 0.14 0.2190 37072 63%

b = 0.30 0.1906 37146 63%

b = 0.80 0.1765 41783 58%

Table 2
Comparison of results from the DETULA (µe = 0.3) with 5 agents, but varying b.

6.3 Logistic regression

We use the a9a dataset available at the UCI machine learning repository to evaluate the performance of the DETULA
for Bayesian logistic regression models. There are 32561 observations and 123 hidden parameters in the dataset. A
Laplace prior with a scale of 1 is placed on the parameters. We implemented a “mini-batch” stochastic gradient
version of Algorithm 1, where at each time instant, each agent uses a batch of 10 data points randomly drawn from
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Xi to compute an approximated ∇ log p(Xi|wi(k)) in (10).

We examined the performance of the DETULA with respect to the number of agents n for n = {5, 10, 25}. For the
DETULA and the DULA, we considered the ring communication topology for each n. During each run, 80% of data
were randomly chosen for training and the remaining 20% for testing as in [47]. The training data were divided into
random sets of equal sizes and distributed to each agent. The same 20% testing data during each run were used
to compare the performance of the CULA, the DULA and the DETULA. For the decentralized algorithms, 1000
iterations were simulated while for the CULA, 10000 iterations were simulated. A Monte-Carlo simulation of 50 runs
was conducted.

In Table 3, we compare the mean accuracy on the testing data set and the average number of inter-agent communi-
cations for the DULA (µe = 0) and the DETULA (µe = 0.5) with n = 5, 10, and 25 agents. We emphasize on the
percentage reduction in communication that the DETULA achieves over DULA. The mean accuracy produced by
the CULA is 84.03%. From the results, the DETULA clearly performs on par with both the CULA and the DULA
with only half of the communication needed. Figure 5 shows the mean and standard deviation of the accuracy for
the DETULA and the DULA. The shaded regions in the figure indicates one standard deviation. From Figure 5,
we see that similar to the DULA, the DETULA produces convergence results with lower standard deviations as n
increases.

n 5 10 25

PA (µe = 0) 84.17% 84.41% 84.18%

PA (µe = 0.5) 84.11% 84.29% 84.26%

Ncomm (µe = 0) 2086 2090 2102

Ncomm (µe = 0.5) 1130 902 864

PR (µe = 0.5) 46% 57% 59%

Table 3
Comparison of results from the DULA (µe = 0) and the DETULA (µ = 0.5) with varying number of agents n after about 1000
iterations for each case. PA: Percentage accuracy, Ncomm: Average number of communications, PR: Percentage reduction in
communication.

7 Conclusion

In this paper, we investigate a distributed Bayesian learning problem, where a group of agents collaboratively
approximate a posterior distribution from locally available data sets and inter-agent communications. We introduce
the first ever distributed event-triggered unadjusted Langevin algorithm and establish conditions on its time-varying
step sizes and on the triggering threshold such that the agents’ samples converge asymptotically to the target
distribution satisfying the LSI assumption. The event-triggering mechanism for communication allows the agents to
communicate periodically, thereby relaxing the constant communication requirement in existing literature. Moreover,
we establish guidelines for preventing consecutive triggering on expectation while still maintaining the same rate
of convergence as without event-triggering. The presented numerical experiments demonstrate that the proposed
algorithm significantly reduced inter-agent communications while generating posterior samples of the same quality
as the centralized algorithm.

8 Appendix

This section provides the detailed analysis of the results discussed in Section 5.

8.1 Proof of Theorem 1

From (14), we have

w(k + 1) = (W(k)⊗ Idw
)w(k)− αkn∇̂E(w(k),X) +

√
2αkv(k) + βk(L ⊗ Idw

)e(k). (43)
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Fig. 5. Comparison between the DETULA with µe = 0.5 and the DULA for 5, 10, and 25 agents. Left column: DETULA for
5, 10, and 25 agents, respectively. Right column: DULA for 5, 10, and 25 agents, respectively.

Define the average-consensus error as: w̃(k) = (M ⊗ Idw
)w(k), where M = In − 1

n
1n1

⊤
n . We then have

w̃(k + 1) = (W(k)⊗ Idw
) w̃(k) + βk(L ⊗ Idw

)ẽ(k)− αkn(M ⊗ Idw
)∇̂E(w(k),X) +

√
2αkṽ(k). (44)

where ṽ(k) = (M ⊗ Idw
)v(k), ẽ(k) = (M ⊗ Idw

) e(k) and we used the following identities:

(A⊗ Idw
)(B ⊗ Idw

) = AB ⊗ Idw
, ∀A,B ∈ R

n×n,

L11⊤ = 11
⊤L.

Taking the norm on both sides of (44) yields

‖w̃(k + 1)‖2 ≤ ‖ ((In − βkL)⊗ Idw
) w̃(k)‖2 + βk‖(L ⊗ Idw

)ẽ(k)‖2 +
√
2αk‖ṽ(k)‖2 + αkn‖(M ⊗ Idw

)∇̂E(w(k),X)‖2.
(45)
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The individual terms on the right hand side of (45) are then analysed below. Since 1
⊤
ndw

w̃k = 0, it follows from
Lemma 4.4 in [23] that for sufficiently large k

‖ ((In − βkL)⊗ Idw
) w̃(k)‖2 ≤ (1− βkλ2(L)) ‖w̃(k)‖2, (46)

since 0 < 1− βkλ2(L) < 1 from Condition 1(ii).
Also, we have

βk‖(L ⊗ Idw
)ẽk‖2 ≤ βkλn(L) ‖ẽk‖2, (47)

and using ‖M ⊗ Idw
‖2 = 1 yields

‖(M ⊗ Idw
)∇̂E(w(k),X)‖2 ≤ ‖∇̂E(w(k),X)‖2

≤ ‖∇̂E(w(k),X)− ∇̂E(1n ⊗ w̄(k),X) + ∇̂E(1n ⊗ w̄(k),X)− ∇̂E(w∗,X)‖2,
≤ ‖∇̂E(w(k),X)− ∇̂E(1n ⊗ w̄(k),X)‖2 + ‖∇̂E(1n ⊗ w̄(k),X)− ∇̂E(w∗,X)‖2,
≤ L‖w̃(k)‖2 + L‖1n ⊗ w̄(k)‖2 + L‖w∗‖2. (48)

where λ2(·) and λn(·) denote the second smallest and the largest eigenvalue respectively, and w
∗ is a local minima of

the function E(·), hence the gradient ∇̂E(w∗) = 0. Thereon, combining the results from (46), (47) and (48) into (45)
yields

‖w̃(k + 1)‖2 ≤ (1− βkλ2(L) + αknL)‖w̃(k)‖2 + αknL‖w∗‖2 + αknL‖1n ⊗ w̄(k)‖2 +
√
2αk‖v(k)‖2

+ βkλn(L) ‖e(k)‖2,
(49)

Define σk = bλ2(L)−anL

(k+1)δ1
< βkλ2(L)− αknL, which then results in

‖w̃(k + 1)‖2 ≤ (1− σk)‖w̃(k)‖2 + αknL‖w∗‖2 + αknL‖1n ⊗ w̄(k)‖2 +
√
2αk‖v(k)‖2 + βkλn(L) ‖e(k)‖2. (50)

For the stability of the algorithm, we need σk ∈ (0, 1), ∀ k ≥ 0 which leads to bλ2(L)− anL < 1 and bλ2(L) > anL.
We next introduce the inequality

(x+ y)
2 ≤ (1 + θ)x2 +

(
1 +

1

θ

)
y2, (51)

∀x, y ∈ R and θ > 0. Making use of (51) multiple times with θ = (1− σk)
− 1

3 − 1 > 0 and in conjunction with the
relations

(1− σk)
−p ≤ (1− σ0)

−p
, ∀p ≥ 0,

1

1− (1− σk)
1
2

≤ 3

σk

.

gives

‖w̃(k + 1)‖22 ≤ (1− σk)‖w̃(k)‖22 +
3(1− σ0)

− 2
3 β2

kλ
2
n(L)

σk

‖e(k)‖22 +
9α2

kn
2L2

σ2
k

‖w∗‖22

+
3α2

kn
2L2(1− σ0)

− 1
3

σk

‖1n ⊗ w̄(k)‖22 +
6αk(1− σ0)

− 1
3

σk

‖v(k)‖22.
(52)
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Now, taking the conditional expectation E [ · |Fk] and thereafter total expectation E[ · ] yields

E
[
‖w̃(k + 1)‖22

]
≤ (1− σk)E

[
‖w̃(k)‖22

]
+

3nµe(1− σ0)
− 2

3 b2λ2
n(L)

σ0(k + 1)δ1+δ3
+

9a2n2L2C∗

σ2
0(k + 1)2δ2−2δ1

+
3a2n2L2(1− σ0)

− 1
3

σ0(k + 1)2δ2−δ1
E
[
‖1n ⊗ w̄(k)‖22

]
+

6an2dw(1− σ0)
− 1

3

σ0(k + 1)δ2−δ1
,

(53)

where we used the following relations:

E
[
‖v(k)‖22

]
= n2dw, (54)

E
[
‖w∗‖22

]
= C∗ ≤ ∞. (55)

and the relation from (20) in Condition 2. From (53), we see the need to have a bound on E
[
‖w(k)‖22

]
, i.e., the

expectation of the average of the samples wi(k) be bounded for all i = {1, 2, . . . , n}. To establish that bound, we resort
to an induction approach, Assuming that E

[
‖w̄(ℓ)‖22

]
≤ Cw̄ , ∀ 0 ≤ ℓ ≤ k, we seek to show that E

[
‖w̄(k + 1)‖22

]
≤ Cw̄

for any k ≥ 0, thus establishing Cw̄ as the desired bound. Towards this end, substituting E
[
‖w̄(k)‖22

]
≤ Cw̄ in (53)

gives

E
[
‖w̃(k + 1)‖22

]
≤ (1− σk)E

[
‖w̃k‖22

]
+

dµe

(k + 1)δ1+δ3
+

d′Cw̄

(k + 1)2δ2−δ1
+

d′′

(k + 1)δ2−δ1
, (56)

where

d =
3n(1− σ0)

− 2
3 b2λ2

n(L)
σ0

, (57)

d′ =
3a2n3L2(1− σ0)

− 1
3

σ0
, (58)

d′′ =
6(1− σ0)

− 1
3 an2dw

σ0
+

9a2n2L2C∗

σ2
0

. (59)

From an extension of Lemma S4 in [39], we have

E[‖w̃(k + 1)‖22] ≤
W5

exp(W1(k + 1)1−δ1)
+

W2µe

(k + 1)δ3
+

W3Cw̄

(k + 1)2δ2−2δ1
+

W4

(k + 1)δ2−2δ1
, (60)

where

W1 =
σ0

1− δ1
, (61)

W2 =
d(δ1 + δ3)

σ0δ1
exp(W12

1−δ1), (62)

W3 =
d′(2δ2 − δ1)

σ0δ1
exp(W12

1−δ1), (63)

W4 =
d′′(δ2 − δ1)

σ0δ1
exp(W12

1−δ1), (64)

W5 = exp(W1)

[
E[‖w̃0‖22] +

k̄1∑

ℓ=0

(
1

(1− σ0)ℓ
d

(ℓ+ 1)δ1+δ3

)
+

k̄2∑

ℓ=0

(
1

(1− σ0)ℓ
d′Cw̄

(ℓ+ 1)2δ2−δ1

)

+

k̄3∑

ℓ=0

(
1

(1− σ0)ℓ
d′′

(ℓ+ 1)δ2−δ1

)]
,

(65)
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wherein k̄1 =

⌈(
δ1+δ3
σ0

) 1
1−δ1

⌉
, k̄2 =

⌈(
2δ2−δ1

σ0

) 1
1−δ1

⌉
and k̄3 =

⌈(
δ2−δ1
σ0

) 1
1−δ1

⌉
. The second term on the right hand

side of (60) sheds light on the rationale of choosing em(k) as in (20). Next, following the convergence analysis using
Fokker Plank equation in (S153) of [39], we have

F (ptk+1
(w̄)) ≤ exp(−ρUαk)F (ptk(w̄)) + 2α2

kL̄
2dw + 2α3

kL̄
4
Ep(w̄(tk))‖w̄(tk)‖22 + (2α3

kL̄L
2 + L2αk)Ep(ω̃(tk))‖ω̃(tk)‖22

≤ exp(−ρUαk)F (ptk(w̄)) + 2α3
kL̄

4Cw̄ + gk,

≤ exp

(
−ρU

k∑

i=0

αi

)
F (pt0(w̄)) + 2L̄4Cw̄

k∑

i=0

α3
i +

k∑

i=0

gi,

(66)

where

gk = 2α2
kL̄

2dw + (2α3
kL̄

2L2 + L2αk)Ep(ω̃(tk))‖ω̃(tk)‖22.

Since ‖ω̃(tk)‖2 is the continuous-time counterpart of ‖w̃(k)‖2, they both have the same decay rate at the discrete
time steps. Thus, substituting E

[
‖w̃(k)‖22

]
from (60), we get

gk ≤ (2a3L̄2L2 + aL2)

[
W5

exp(W1(k + 1)1−δ1)(k + 1)δ2
+

W2µe

(k + 1)δ2+δ3
+

W4

(k + 1)2δ2−2δ1

]
+

2a2L̄2dw
(k + 1)2δ2

+
W ′

3

(k + 1)3δ2−2δ1
Cw̄,

(67)

≤ ḡk +
W ′

3

(k + 1)3δ2−2δ1
Cw̄, (68)

where {ḡk} ∼ O
(

1
kδ2+δ3

)
+O

(
1

k2δ2−2δ1

)
and W ′

3 = (2a3L̄2L2+aL2)W3. Let δ2+ δ3 > 1 and 2δ2−2δ1 > 1, then {ḡk}
is a summable sequence, i.e., there exists an 0 < s < ∞ such that

∑∞
i=0 ḡk = s. Thus,

k∑

i=0

gi ≤
k∑

i=0

ḡi +

(
k∑

i=0

W ′
3

(k + 1)3δ2−2δ1

)
Cw̄,≤

∞∑

i=0

ḡi +

(
1 +

∫ ∞

0

dt

(t+ 1)3δ2−2δ1

)
W ′

3Cw̄,

≤ s+

(
3δ2 − 2δ1

3δ2 − 2δ1 − 1

)
W ′

3Cw̄.

(69)

Also,

k∑

i=0

α3
i ≤ a3 +

∫ ∞

0

a3

(t+ 1)3δ2
dt =

3δ2a
3

3δ2 − 1
. (70)

Substituting (69) and (70) in (66) results in

F (ptk+1
(w̄)) ≤ s′ +

(
6n4a3L4δ2
3δ2 − 1

+
3δ2 − 2δ1

3δ2 − 2δ1 − 1
W ′

3

)
Cw̄, (71)

where s′ = s+ F (pt0(w̄)).
Next, we establish the relation between the expected value E

[
‖w̄(tk+1)‖22

]
and the KL-divergence F (ptk+1(w̄)) of

the average of the samples w̄. To this end, following the proof of Lemma 6 from [31], we couple w̄∗ optimally with

19



w̄(t) ∼ pt(w̄), i.e., (w̄(t), w̄∗) ∼ γ ∈ Γopt(pt(w̄), p∗). This gives us

E
w̄(tk+1)∼ptk+1

[
‖w̄(tk+1)‖22

]
= E(w̄(tk+1),w̄∗)∼γ

[
‖w̄∗ + w̄(tk+1)− w̄∗‖22

]
,

≤ 2Ew̄
∗∼p∗‖w̄∗‖22 + 2E(w̄(tk+1),w̄∗)∼γ‖w̄(tk+1)− w̄∗‖22,

≤ 2c1 + 2W2
2 (ptk+1

(w̄), p∗),

≤ 2c1 +
4

ρU
F (ptk+1

(w̄)),

(72)

where W2( · , · ) denotes the Wasserstein metric between two distributions and and the relation in the last inequality
comes from [38, Theorem 1]. Using (71) in (72), we obtain

E
[
‖w̄(tk+1)‖22

]
≤ 2c1 +

4

ρU

[
s′ +

(
6n4a3L4δ2
3δ2 − 1

+
3δ2 − 2δ1

3δ2 − 2δ1 − 1
W ′

3

)
Cw̄

]
. (73)

To establish a uniform bound on E
[
‖w̄(tk)‖22

]
for all k ≥ 0 via induction, we need E

[
‖w̄(tk+1)‖22

]
≤ Cw̄, i.e.,

2c1 +
4

ρU

[
s′ +

(
6n4a3L4δ2
3δ2 − 1

+
3δ2 − 2δ1

3δ2 − 2δ1 − 1
W ′

3

)
Cw̄

]
≤ Cw̄, (74)

which results in

Cw̄ ≥
2c1 +

4
ρU

s′

1− 4
ρU

(
6n4a3L4δ2

3δ2−1 + 3δ2−2δ1
3δ2−2δ1−1W

′
3

) . (75)

For 0 < Cw̄ < ∞ to exist as given by (75), we further have to ensure that

1− 4

ρU

(
6n4a3L4δ2
3δ2 − 1

+
3δ2 − 2δ1

3δ2 − 2δ1 − 1
W ′

3

)
> 0,

i.e.,

1− 4

ρU

(
6n4a3L4δ2
3δ2 − 1

+
3δ2 − 2δ1

3δ2 − 2δ1 − 1
× (2a3L̄2L2 + aL2)

d′(2δ2 − δ1)

σ0δ1
exp(W12

1−δ1)

)
> 0, (76)

where W1 = σ0

1−δ1
< bλ2(L)

1−δ1
. Thus, (76) is guaranteed when

1− 4

ρU

(
6n4a3L4δ2
3δ2 − 1

+
3δ2 − 2δ1

3δ2 − 2δ1 − 1
(2a3L̄2L2 + aL2)

d′(2δ2 − δ1)

σ0δ1
exp

(
bλ2(L)
1− δ1

21−δ1

))
> 0. (77)

Further, substituting d′ from (58) in (76) results in the following polynomial condition in a:

φ(a) = θ5a
5 + θ4a

4 + θ3a
3 + θ2a

2 + θ1a− ρUb
2λ2

2(L)
4

< 0, (78)
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where

θ5 =
6n6L6δ2
3δ2 − 1

+ 6n3L̄2L4(1− bλ2(L))−
1
3
(3δ2 − 2δ1)(2δ2 − δ1)

δ1(3δ2 − 2δ1 − 1)
exp(W12

1−δ1) > 0,

θ4 = −12bn5L5λ2(L)δ2
3δ2 − 1

< 0,

θ3 =
6n4L4δ2b

2λ2
2(L)

3δ2 − 1
+ 3n3L2(1− bλ2(L))−

1
3
(3δ2 − 2δ1)(2δ2 − δ1)

δ1(3δ2 − 2δ1 − 1)
exp(W12

1−δ1) > 0,

θ2 = −ρUn
2L2

4
< 0,

θ1 =
ρUnbLλ2(L)

2
> 0.

Since, φ(0) = −ρUb2λ2
2(L)

4 < 0 and φ(a) is a continuous function of a, there exists ā ∈ (0, 1] such that ∀ a ∈ (0, ā) we
have φ(a) < 0. Hence, we shall always be able to find values of a such that φ(a) < 0 is satisfied and, thus, existence
of Cw̄ is guaranteed. This concludes

E
[
‖w̄(k)‖22

]
≤ Cw̄, ∀k ≥ 0, (79)

where the lower bound on Cw̄ is given by (75). Finally, combining (79) with (53) yields

E
[
‖w̃(k + 1)‖22

]
≤ (1− σk)E

[
‖w̃(k)‖22

]
+

3nµe(1− σ0)
− 2

3 b2λ2
n(L)

σ0(k + 1)δ1+δ3
+

9a2n2L2C∗

σ2
0(k + 1)2δ2−2δ1

+
3a2n3L2Cw̄(1− σ0)

− 1
3

σ0(k + 1)2δ2−δ1
+

6an2dw(1− σ0)
− 1

3

σ0(k + 1)δ2−δ1
,

(80)

which from the extension of Lemma 3 leads to ∀ k ≥ 0

E[‖w̃(k + 1)‖22] ≤
W5

exp(W1(k + 1)1−δ1)
+

W2µe

(k + 1)δ3
+

W3Cw̄

(k + 1)2δ2−2δ1
+

W4

(k + 1)δ2−2δ1
, (81)

where W1, W2, W3, W4 and W5 are given in (61) – (65), respectively. Furthermore, it can be easily seen from (81) that

for large k, E
[
‖w̃(k + 1)‖22

]
∼ O

(
1

(k+1)δp

)
, where δp = min{δ3, δ2−2δ1}. This concludes the proof of Theorem 1. �

8.2 Proof of Theorem 2

In order to establish convergence we start with the analysis of the continuous time evolution of the KL divergence
of the distribution of the mean of the samples from all the agents. Thus, from (27) we note

Ḟ (pt(w̄)) =

∫ (
log

(
pt(w̄)

p∗(w)

))
∂pt(w̄)

∂t
dw̄. (82)

An expression of ∂pt(w̄)
∂t

can be obtained from the Fokker-Plank (FP) equation (see 4.1 in [40]). Additionally, making
use of the LSI assumption from Assumption 3, the following result is obtained.

Ḟ (pt(w̄)) ≤ −ρUF (pt(w̄)) + 2α2
kL̄

4
Ep(w̄(tk))‖w̄(tk)‖22 + (2α2

kL̄
2L2 + L2)Ep(ω̃(tk))‖ω̃(tk)‖22 + 2αkL̄

2dw. (83)

The detailed derivation of (83) can be found in Section S4 of [39]. Thereafter, integrating (83) from tk to tk+1, where

k indicates the discrete time steps, and using 1−exp(−ρU (tk+1−tk))
ρU

≤ tk+1 − tk = αk yields

F (ptt+1
(w̄)) ≤ exp(−ρUαk)F (ptk(w̄)) + 2α2

kL̄
2dw + 2α3

kL̄
4
Ep(w̄(tk))‖w̄(tk)‖22

+ (2α3
kL̄L

2 + L2αk)Ep( ˜ω(tk))
‖ω̃(tk)‖22.

(84)

21



Let

Zk =
W5(2α

3
kL̄

2L2 + L2αk)

exp(W1k1−δ1)
, (85)

ξk = 2α3
kL̄

4Cw̄ + (2α3
kL̄

2L2 + L2αk)

(
W2µe

kδ3
+

W3Cw̄

k2δ2−2δ1
+

W4

kδ2−2δ1

)
+ 2α2

kL̄
2dw + Zk, (86)

θk =
W5(2a

3L̄2L2 + L2a)

exp(W1k1−δ1)
=

W̄5

exp(W1k1−δ1)
, (87)

where W̄5 = (2a3L̄2L2 + L2a)W5 and Zk ≤ θk. Thus, (84) becomes

F (ptk+1
(w̄)) ≤ exp(−ρUαk)F (ptk(w̄)) + ξk,

≤ exp

(
− ρU

k∑

ℓ=0

αk

)
F (pt0(w̄))

+

k∑

ℓ=0

ξk exp

(
− ρU

k∑

i=ℓ+1

αi

)
,

(88)

Now,

ξk ≤ 2a3L̄4Cw̄

k3δ2
+

(
2a3L̄2L2

k3δ2
+

L2a

kδ2

)(
W2µe

kδ3
+

W3Cw̄

k2δ2−2δ1
+

W4

kδ2−2δ1

)
+

2a2L̄2dw
k2δ2

+ θk,

≤ 2a3L̄4Cw̄

k3δ2
+

2a3L̄2L2W2µe

k3δ2+δ3
+

L2aW2µe

kδ2+δ3
+

2a3L̄2L2W3Cw̄

k5δ2−2δ1
+

L2aW3Cw̄

k3δ2−2δ1
+

2a3L̄2L2W4

k4δ2−2δ1

+
L2aW4

k2δ2−2δ1
+

2a2L̄2dw
k2δ2

+ θk,

≤ Cξ

k2δ2−2δ1
+

L2aW2µe

kδ2+δ3
+ θk,

(89)

where Cξ = 2a3L̄4Cw̄ + 2a3L̄2L2W2µe + 2a3L̄2L2W3Cw̄ + L2aW3Cw̄ + 2a3L̄2L2W4 + L2aW4 + 2a2L̄2dw.

Therefore,

k∑

ℓ=0

ξℓ exp

(
− ρU

k∑

i=ℓ+1

αi

)
≤

k∑

ℓ=0

Cξ

ℓ2δ2−2δ1
exp

(
− ρU

k∑

i=ℓ+1

αi

)

︸ ︷︷ ︸
+

k∑

ℓ=0

L2aW2µe

ℓδ2+δ3
exp

(
− ρU

k∑

i=ℓ+1

αi

)

︸ ︷︷ ︸
T1 T2

+

k∑

ℓ=0

θℓ exp

(
− ρU

k∑

i=ℓ+1

αi

)

︸ ︷︷ ︸
T3

(90)
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We will next analyze the terms T1, T2 and T3 one at a time. For T1, we have for some k̄1 ∈ (0, k),

T1 =
k∑

ℓ=0

Cξ

ℓ2δ2−2δ1
exp

(
− ρU

k∑

i=ℓ+1

αi

)

=

k̄1∑

ℓ=0

Cξ exp
(
ρU
∑ℓ

i=0 αi

)

ℓ2δ2−2δ1
exp

(
− ρU

k∑

i=0

αi

)
+

k∑

ℓ=k̄1+1

Cξ

ℓ2δ2−2δ1
exp

(
− ρU

k∑

i=ℓ+1

αi

)
,

≤
k̄1∑

ℓ=0

Cξ exp(aρU ) exp
(

aρU

1−δ2
ℓ1−δ2

)

ℓ2δ2−2δ1
exp

(
− ρU

k∑

i=0

αi

)
+ Cξ exp

(
− ρUa

1− δ2
(k + 1)1−δ2

)
×

k∑

ℓ=k̄1+1

exp
(

aρU

1−δ2
(ℓ+ 2)1−δ2

)

ℓ2δ2−2δ1
,

(91)

≤
k̄1∑

ℓ=0

Cξ exp(aρU ) exp
(

aρU

1−δ2
ℓ1−δ2

)

ℓ2δ2−2δ1
exp

(
− ρU

k∑

i=0

αi

)
+ Cξ exp

(
− ρUa

1− δ2
(k + 1)1−δ2 +

aρU
1− δ2

21−δ2

)
×

k∑

ℓ=k̄1+1

exp
(

aρU

1−δ2
ℓ1−δ2

)

ℓ2δ2−2δ1
.

(92)

We used the result
∑k

i=ℓ+1 αi ≥
∫ k

ℓ+1
a

(t+1)δ2
dt = a((k+1)1−δ2−(ℓ+2)1−δ2 )

1−δ2
in (91). Now,

exp
(

aρU
1−δ2

ℓ1−δ2

)
ℓ2δ2−2δ1

in the last term

of (92) has a local minima at
⌈(

2δ2−2δ1
aρU

) 1
1−δ2

⌉
. So, we choose k̄1 =

⌈(
2δ2−2δ1

aρU

) 1
1−δ2

⌉
. Thus, we have

k∑

ℓ=k̄1+1

exp
(

aρU

1−δ2
ℓ1−δ2

)

ℓ2δ2−2δ1
≤
∫ k+1

k̄1

exp
(

aρU

1−δ2
t1−δ2

)

t2δ2−2δ1
dt ≤ 2δ2 − 2δ1

aρUδ2

(
exp

(
aρU

1−δ2
(k + 1)1−δ2

)

(k + 1)δ2−2δ1
−

exp
(

aρU

1−δ2
k̄1−δ2

)

k̄δ2−2δ1
1

)

≤ 2δ2 − 2δ1
aρUδ2

exp
(

aρU

1−δ2
(k + 1)1−δ2

)

(k + 1)δ2−2δ1
. (93)

Combining (92) with (93) results in

T1 ≤
k̄1∑

ℓ=0

Cξ exp(aρU ) exp
(

aρU

1−δ2
ℓ1−δ2

)

ℓ2δ2−2δ1
exp

(
− ρU

k∑

i=0

αi

)
+

2Cξ(δ2 − δ1)

aρUδ2

exp
(

aρU

1−δ2
21−δ2

)

(k + 1)δ2−2δ1
. (94)

Following a similar analysis as we did for term T1, we get the result below for term T2.

T2 =

k∑

ℓ=0

L2aW2µe

ℓδ2+δ3
exp

(
− ρU

k∑

i=ℓ+1

αi

)

≤
k̄2∑

ℓ=0

L2aW2µe exp(aρU ) exp
(

aρU

1−δ2
ℓ1−δ2

)

ℓδ2+δ3
exp

(
− ρU

k∑

i=0

αi

)
+

L2aW2µe(δ2 + δ3)

aρUδ2

exp
(

aρU

1−δ2
21−δ2

)

(k + 1)δ3
,

(95)
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where k̄2 =

⌈(
δ2+δ3
aρU

) 1
1−δ2

⌉
. Finally for T3, we first note that

θℓ exp

(
− ρU

k∑

i=ℓ+1

αi

)
≤ θℓ exp(aρU ) exp

(
− ρU

k∑

i=ℓ

αi

)
, (96)

which leads to

T3 =

k∑

ℓ=0

θℓ exp

(
− ρU

k∑

i=ℓ+1

)

≤ W̄5 exp(aρU ) exp

(
− aρU

1− δ2
(k + 1)1−δ2

)
exp

(
aρU
1− δ2

) k∑

ℓ=0

exp

(
ℓ1−δ1

(
aρU
1− δ2

ℓδ1−δ2−W1

))
,

≤ Cθ exp

(
− aρU

1− δ2
(k + 1)1−δ2

)
,

(97)

where

Cθ = W̄5 exp(aρU ) exp

(
aρU
1− δ2

)[ ℓ̄∑

ℓ=0

exp

(
aρU
1− δ2

ℓ1−δ2 −W1ℓ
1−δ1

)
+

κ− 1
1−δ1

1− δ1
Γ

(
1

1− δ1

)]
,

ℓ̄ =

⌈(
aρU

(1− δ2)W1

) 1
δ2−δ1

⌉
,

κ =

(
W1 −

aρU
(1− δ2)ℓ̄δ2−δ1

)
> 0,

and Γ(·) is the gamma function given as

Γ(z) =

∫ ∞

0

xz−1 exp(−x)dx, ∀ z > 0.

Replacing the results from (94), (95), (97) in (90) and thereafter combining it with (88) yields

F (ptk+1
(w̄)) ≤

[
F (pt0(w̄)) +

k̄1∑

ℓ=0

Cξ exp
(
ρU
∑ℓ

i=0 αi

)

ℓ2δ2−2δ1
+

k̄2∑

ℓ=0

L2aW2µe exp
(
ρU
∑ℓ

i=0 αi

)

ℓδ2+δ3

]
exp

(
− ρU

i∑

i=0

αk

)

+
exp

(
aρU

1−δ2
21−δ2

)

aρUδ2

[
2Cξ(δ2 − δ1)

(k + 1)δ2−2δ1
+

L2aW2µe(δ2 + δ3)

(k + 1)δ3

]
+ Cθ exp

(
− aρU

1− δ2
(k + 1)1−δ2

)
, (98)
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where

Cξ = a3
[
2L̄4 + L2(2a2L̄2 + 1)W̄3

]
Cw̄ + 2a3L̄2L2W2µe + a2

[
L2(2a2L̄2 + 1)(W̄4a+ ¯̄W4)

]
+ 2a2L̄2dw,

W̄3 =
3n3L2

V (1− σ0)
− 1

3 (2δ2 − δ1)

σ2
0δ1

exp
(
W12

1−δ1
)
,

W̄4 =
9n2L2

V C
∗(δ2 − δ1)

σ3
0δ1

exp
(
W12

1−δ1
)
,

¯̄W4 =
6n2dw(1− σ0)

− 1
3

σ2
0δ1

exp
(
W12

1−δ1
)
,

Cθ = aL2(2a2L̄2 + 1)W5 exp

(
aρU

(
2− δ2
1− δ2

))[ ℓ̄∑

ℓ=0

exp

(
aρU
1− δ2

ℓ1−δ2 −W1ℓ
1−δ1

)
+

κ− 1
1−δ1

1− δ1
Γ

(
1

1− δ1

)]
,

ℓ̄ =

⌈(
aρU

(1− δ2)W1

) 1
δ2−δ1

⌉
,

κ = W1 −
aρU

(1− δ2)ℓ̄δ2−δ1
.

Finally, (98) can be rewritten as

F (ptk+1
(w̄)) ≤ C̄

F1
exp

(
−ρU

k∑

i=0

αi

)
+ µe

(
C̄

F2

(k + 1)δ2−2δ1
+

C̄
F3

(k + 1)δ3

)
+

C̄
F4

(k + 1)δ2−2δ1

+ C̄
F5

exp

(
− ρUa

1− δ2
(k + 1)1−δ2

) (99)

where

C̄
F1

= F (pt0(w̄)) +

k̄1∑

ℓ=0

Cξ exp
(
ρU
∑ℓ

i=0 αi

)

ℓ2δ2−2δ1
+

k̄2∑

ℓ=0

L2aW2µe exp
(
ρU
∑ℓ

i=0 αi

)

ℓδ2+δ3
, (100)

C̄
F2

=
4a2L̄2L2W2(δ2 − δ1)

ρUδ2
exp

(
aρU
1− δ2

21−δ2

)
, (101)

C̄
F3

=
L2W2(δ2 + δ3)

ρUδ2
exp

(
aρU
1− δ2

21−δ2

)
, (102)

C̄
F4

=
2a(δ2 − δ1)

ρUδ2
exp

(
aρU
1− δ2

21−δ2

)[
a
(
2L̄4 + L2(2a2L̄2 + 1)W̄3

)
Cw̄ + L2(2a2L̄2 + 1)(W̄4a+ ¯̄W4)

+ 2L̄2dw

]
,

(103)

C̄
F5

= Cθ. (104)

This concludes the proof of Theorem 2. �

8.3 Proof of Corollary 1

Using (A12) from Appendix A2 in [7]

k∑

l=0

αl ≥
∫ k

0

a

(x+ 1)δ2
dx =

a(k + 1)1−δ1

1− δ1
− a

1− δ1
. (105)
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Substituting (105) in (99), we have

F (ptk+1
(w̄)) ≤ Q1 exp

(
− aρU
1− δ2

(k + 1)1−δ2

)
+

C̄
F4

(k + 1)δ2−2δ1
+

µeQ2

(k + 1)δc

where

Q1 = C̄
F1

exp

(
aρU
1− δ2

)
+ C̄

F5
, (106)

Q2 = C̄
F2

+ C̄
F3
, (107)

δc = min{δ3, δ2 − 2δ1}. (108)

Now, F (ptk+1
(w̄)) ≤ ǫ is guaranteed if we satisfy the following criteria

Q1 exp

(
− aρU
1− δ2

(k + 1)1−δ2

)
≤ ǫ

3
, (109)

C̄
F4

(k + 1)δ2−2δ1
≤ ǫ

3
, (110)

µeQ2

(k + 1)δc
≤ ǫ

3
. (111)

From (109) and (110), we get the following conditions respectively.

k ≥
(
1− δ2
aρU

log

(
3Q1

ǫ

)) 1
1−δ2

− 1,

k ≥
(
3C̄

F4

ǫ

) 1
δ2−2δ1

− 1.

Therefore, to satisfy both (109) and (110) simultaneously, we choose k∗ as:

k∗ = max

{(
1− δ2
aρU

log

(
3Q1

ǫ

)) 1
1−δ2

− 1,

(
3C̄

F4

ǫ

) 1
δ2−2δ1

− 1

}
. (112)

In addition, to satisfy (111), we substitute k∗ from (112) into (111) and find a bound on µe as follows.

µe ≤
(
(k∗ + 1)δc

3Q2

)
ǫ. (113)

This concludes the proof of Corollary 1. �

8.4 Proof of Theorem 3

Let kq be any time step of event triggering for one specific agent, say, the i-th agent. Then the error term of agent i
for the next time step (kq + 1) is given by

ei(kq + 1) = wi(kq + 1)− ŵi(kq + 1) = wi(kq + 1)−wi(kq). (114)
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Substituting (10) in (114), we get

ei(kq + 1) = βkq

n∑

j=1

aij(ei(kq)− ej(kq))− βkq

n∑

j=1

(wi(kq)−wi(kq)) + αkq
n∇Ei(wi(kq),Xi)

+
√
2αkq

dvi(kq).

(115)

Taking the norm of (115), we have

‖ei(kq + 1)‖2 ≤ βkq

∥∥∥∥
n∑

j=1

aij(ei(kq)− ej(kq))

∥∥∥∥
2

+ βkq

∥∥∥∥
n∑

j=1

aij(wi(kq)−wj(kq))

∥∥∥∥
2

+
√
2αkq

‖vi(kq)‖2

+ αkq
n‖∇Ei(wi(kq),Xi)‖2,

≤ (2βkq
di + αkq

nL)‖w(kq)‖max
2 + βkq

di‖ei(kq)‖max
2 +

√
2αkq

‖vi(kq)‖2 + αkq
nL‖w∗‖2,

(116)

where ‖w(kq)‖max
2 = max

j={1,2,...,n}

{
‖wj(kq)‖2, ‖w∗‖2

}
, ‖e(kq)‖max

2 = max
j={1,2,...,n}

‖ej(kq)‖2 and di is the number of

neighbors of the i-th agent, i.e., di = |Ni|
(
where | · | denotes the cardinality

)
. In (116), ei(kq) vanishes since i-th

agent triggers at the kq-th time step.

Next, squaring both sides of (116) and using (51) multiple times with θ = (1− βkq
λ2(L))−1 − 1 > 0, we obtain

‖ei(kq + 1)‖22 ≤ (1− βkq
λ2(L))−2(2βkq

di + αkq
nL)2

(
‖w(kq)‖max

2

)2
+

(1− βkq
λ2(L))−1βkq

d2i
λ2(L)

(
‖ei(kq)‖max

2

)2

+
(1− βkq

λ2(L))−1

βkq
λ2(L)

2αkq
‖vi(kq)‖22 +

α2
kq
n2L2

β2
kq
λ2
2(L)

‖w∗‖22.
(117)

We then take the conditional expectation E[ · |Fkq
] of (117) and then the total expectation given to yield

E[‖ei(kq + 1)‖22] ≤
(1− bλ2(L))−2(2bdm + anL)2Cw

(kq + 1)2δ1
+

(1− bλ2(L))−1bd2mµe

λ2(L)(k + 1)δ1+δ3
+

2andw(1− bλ2(L))−1

bλ2(L)(kq + 1)δ2−δ1

+
a2n2L2c∗

b2λ2
2(L)(kq + 1)2δ2−2δ1

,

(118)

≤ ξq
(kq + 1)δm

, (119)

where dm = max
i={1,2,...,n}

di, δm = min{δ1 + δ3, δ2 − δ1, 2δ1} and

ξq = c̄1 + c̄2µe, (120)

wherein

c̄1 = (1− bλ2(L))−2(2bdm + anL)2Cw +
2andw(1− bλ2(L))−1

bλ2(L)
+

a2n2L2c∗

b2λ2
2(L)

, (121)

c̄2 =
(1− bλ2(L))−1bd2m

λ2(L)
. (122)

In (118) we have made use of the results E

[(
‖w(kq)‖max

2

)2] ≤ Cw (which follows from the conclusion in (79) and
(
1− βkq

λ2(L)
)−n ≤ (1− bλ2(L))−n, n ∈ {1, 2}.
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To prevent triggering in consecutive time steps, on expectation, we need to ensure

E[‖ei(kq + 1)‖22] ≤
µe

(kq + 2)δ3
,

which, from (119), is ensured if

ξq
(kq + 1)δm

≤ µe

(kq + 2)δ3
, (123)

i.e.,

ξq ≤ (kq + 1)δm

(kq + 2)δ3
µe, (124)

Furthermore, since δm ≥ δ3, then
(kq+1)δm

(kq+2)δ3
rapidly goes beyond 1 with increasing time steps, thus, we need only to

ensure ξq ≤ µe which from (120) gives

µe >
c̄1

1− c̄2
. (125)

The condition in (125) can be easily satisfied by adjusting the parameters (b, µe). Further, from Markov’s inequality,
we get

p

(
‖ei(kq + 1)‖22 >

µe

(kq + 2)δ3

)
≤ ξq

µe

(kq + 2)δ3

(kq + 1)δm
,≤
(
c̄1
µe

+ c̄2

)
(kq + 2)δ3

(kq + 1)δm
. (126)

This concludes the proof of Theorem 3. �

9 Appendix

In this section, we list all the useful lemmas that have been used for the analysis of our algorithm.

Lemma 1 Given assumption 1, we have

M ,

(
In − 1

n
1n1

⊤
n

)
= LL+, (127)

where (·) denotes the generalized inverse. Furthermore, for all x ∈ R
n and x /∈ R

n
1
, we have

x̃
⊤Lx̃ = x

⊤Lx > λ2(L)x⊤
x, (128)

where x̃ = Mx and λ2(·) denoted the second largest eigenvalue of L.

Refer to Lemma 3 in [21] for a detailed proof.

Lemma 2 Let f(t) be a non-negative and decreasing sequence for all k ≤ t ≤ K, then we have

∫ K

k

f(t)dt ≤
K∑

t=k

f(t) ≤
∫ K

k−1

f(t)dt. (129)

28



Alternatively, for a non-negative and increasing sequence f(t) for all k ≤ t ≤ K, we have

∫ K

k−1

f(t)dt ≤
K∑

t=k

f(t) ≤
∫ K+1

k

f(t)dt. (130)

Refer to Appendix A2 in [7] for the proof.

Lemma 3 For a non-negative sequence {yk} satisfying:

yk+1 ≤
(
1− µβ

(k + 1)δ1

)
+

µζ

(k + 1)δ4
, (131)

for all k ≥ 0 and where 0 < µβ ≤ 1, δ1, δ4 ∈ (0, 1) and δ1 < δ4, we have the following convergence rate.

yk+1 ≤ Y3

exp(Y1(k + 1)1−δ1)
+

Y2

(k + 1)δ4
, (132)

where

Y1 =
µβ

1− δ1
,

Y2 =
µζδ4
µβδ1

exp(Y12
1−δ1),

Y3 = exp(Y1)

(
y0 +

k̄∑

t=0

(1− µβ)
−1 µζ

(k + 1)δ4

)
,

k̄ =

⌈(
δ4
µβ

) 1
1−δ1

⌉
.

Refer to Lemma S4 in [39] for a detailed proof.
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