!I- Computer Methods (MAE 3403)

Numerical differentiation and
integration

Numerical methods in engineering with Python 3
Python Programming and Numerical Methods

i Motivation

= Many systems change over time, space and other
dimensions of interest. Such changes are modelled as
function derivatives.

= In practice, the function may not be known or the
function may be implicitly known by data points.

= Can we compute derivatives numerically rather than
analytically?

:_h Numerical differentiation

= Compute df(x)/dx numerically
= Numerical grids: linspace in 1-D
-1 o X1 T2 I3

— : | | | ! >
< > >4 >« >

= Although a function may be continuous, its discretized
version is more useful for differentiation and
integration.

Finite difference approximating

i derivatives

f(a) = lim f(z)—f(a)

r—a

= We use values in the neighborhood of a to
approximate the derivative

Forward difference Backward difference Central difference
A A A
f(x) f(x) true)
slope

Approximated
slope \

Approximated
slope .

Approximated
slope

$ Three types of differences as derivative

s Forward difference
f (37]) f(J+1) f(mj)

Li+1—Lj

s Backward difference
f(mg) f(%) f(ma 1)

Lj—Lj—1

» Central difference (better accuracy)

]c (QZ’J) f(J-I-l) f(xg 1)

Lj+1—Lj—1

$ Python

= Finite difference computation: d=np.diff(f)
= d(i) = f(i+1)-f(Q)

m The size of the output 1s one less than the size of the mput

Example

Import numpy as np
import matplotlib.pyplot as pit

step size

h=0.1

define grid

X = np.arange(0, 2*np.pi, h)

compute function

Yy = np.cos(X)

compute vector of forward differences
forward_diff = np.diff(y)/h

compute corresponding grid

x_diff = x[:-1:]

compute exact solution
exact_solution = -np.sin(x_diff)

Plot solution

plt.figure(figsize = (12, 8))
plt.plot(x_diff, forward_diff, '--', \ label =
'Finite difference approximation')
plt.plot(x_diff, exact_solution, \ label =
'Exact solution”)

plt.legend()

plt.show()

compute max error

max_error = max(abs(exact_solution -
forward_diff))

print(max_error) 7

0.75 1

0.50 H

0.25 1

0.00 H

—0.25 1

—0.50 1

—0.75 1

—1.00 1

Finite difference approximation
- Exact solution

Max-error

10—1 J

10—2 J

10—3 J

10—4 J

10—5 J

10—6 J

1075

1073

1074 1073 1072

step-size (h)

1071

i Higher-order derivatives

= Use Taylor series
R (x) R (xy) |
Flag—1) = flag) = hf!(ag) + 00 - Eed

h2 /7 T ; | h3 117 T ; |
flagen) =) + by () + =500 4 LGl
h4f//// (ZUJ)

f(@j-1) + f(wj1) = 2f (5) + b2 (25) + =572 + -+

f”(xj) S(zjy1)— 2f(acj)—|—f(acj 1)

:_L Sensitivity w.r.t. noise

= Sometimes data are contaminated with noise, i.e.,
data = theoretical value + random offset

= Differentiation is sensitive to noise
= Even if noise is small, its derivative may be significant

= Consider f(x) = cos(x), and f_noise = cos(x) + e*sin(wx),
where e = 0.01 and w = 100.

10

i Plot of f vs. f noise

Can you write code to compare f and f_noise in a figure?

1.00 -

0.75 A

0.50 -

0.25 -

> 0.00 1

—0.25 1

—0.50 1

—0.75 A
— c0s(x) + noise
—-1.00 { = cos(x)

0 1 P 3 4 5 b
X 11

$ Compare f" and f’_noise

= Can you write code to compare their derivatives?

2.0 1 = Derivative cos(x) + noise
—— Derivative of cos(x)

1.5 1

1.0 -

0.5 1

12

i Numerical Integration

= Compute the integral of f(x) S / f(a)d

given f(x) ft
= Such an integral typically /ﬂ

described as area under the
curve.

= Many applications in modeling,
predicting, and understanding of ‘ b
physics.

> T

13

i Typical process to approximate integral

= Discretize the interval [a,b] into a numerical grid,
consisting of n+1 points with spacing h = (b-1)/n.

s Let x; be the corresponding ith grid points (x,=a, x.=b).
= We can compute f(x), i=0,...,n.

s The integral is typically approximated as the sum of the
areas for each subinterval [x;, x.,).

14

:_h Riemanns integral

= Summing the area of rectangles

o (2\da » Left

ft 7/ |
=, \ -Right

— = Overall accuracy: O¢h)

a b

>

XO Xl Xz 15

a

b

Xo

X1 Xy

> T

[7 f(x)de o Y20 hf (b)),

= Overall accuracy: O(h?),
better than the previous two
methods

= If f(X) is given as data points,
we can't use this rule.

16

:_L Trapezoid Rule

= Fits a trapezoid into each
subinterval and sums the
areas of the trapezoids.

fa f(z)dz ~ 37 h () 2(+1)

_

= Overall accuracy: O(h?) 2

= Simplified form: o T

J; f@)de = (flwo) +2 (XI5 F(@0) + fan))

17

:_L Simpson’s Rule

= Approximates the area under f(x) over two
consecutive subintervals by fitting a quadratic

polynomial through (X;.;,f(X;.1)), (X, f(X;)), (Xir1,f(Xis1))

o X1 4] Tj—1 Tj Tj41

18

:_L Formula

= Must have an even number of intervals (i.e., an odd
number of grid points)

[e~ f(a:o>+4(3 f(a:@->)+2(3 f(wz-))+f(ivn) |

i=1,i odd

1=2,7 even

= Overall accuracy: O(h%) o

i Example

s Use the left Riemann Integral, right Riemann Integral,
Midpoint Rule, Trapezoid Rule, Simpson’s Rule to
approximate the integration of sin(x) from O to pi with
11 evenly spaced grid points over the whole interval.
Compare this value to the exact value of 2.

20

:_h Python implementations

. . import numpy as np
= The scipy.integrate SUbMOAUI€ from scipy.integrate import trapz

has several functions related a =0

to integrals 2 - 'II;-Pi
= trapz takes an array of h=(b-a)/(n-1)
function values of fon a x = np.linspace(a, b, n)

: : f = np.sin(x)
numerical grid and computes | tan; - trapz(fx)
the integral using trapezoid 1_trap = (h/2)*(f[0] + 2 * sum(f[1:n-1]) +
rule fln-1])
print(I_trapz)
print(I_trap) 51

:_h The quad function

= quad(f, a, b): use different numerical techniques to
integrate by function object f fromatob

from scipy.integrate import quad

I_quad, est_err_quad =\
quad(np.sin, 0, np.pi)

print(I_quad)

err_quad = 2 - I_quad

print(est_err_quad, err_quad)

22

	Slide 1: Computer Methods (MAE 3403)
	Slide 2: Motivation
	Slide 3: Numerical differentiation
	Slide 4: Finite difference approximating derivatives
	Slide 5: Three types of differences as derivative
	Slide 6: Python
	Slide 7: Example
	Slide 8
	Slide 9: Higher-order derivatives
	Slide 10: Sensitivity w.r.t. noise
	Slide 11: Plot of f vs. f_noise
	Slide 12: Compare f’ and f’_noise
	Slide 13: Numerical Integration
	Slide 14: Typical process to approximate integral
	Slide 15: Riemanns integral
	Slide 16: Midpoint rule
	Slide 17: Trapezoid Rule
	Slide 18: Simpson’s Rule
	Slide 19: Formula
	Slide 20: Example
	Slide 21: Python implementations
	Slide 22: The quad function

