
Computer Methods (MAE 3403)

Numerical differentiation and
integration

1
Numerical methods in engineering with Python 3

Python Programming and Numerical Methods

Motivation

◼ Many systems change over time, space and other
dimensions of interest. Such changes are modelled as
function derivatives.

◼ In practice, the function may not be known or the
function may be implicitly known by data points.

◼ Can we compute derivatives numerically rather than
analytically?

2

Numerical differentiation

◼ Compute df(x)/dx numerically

◼ Numerical grids: linspace in 1-D

◼ Although a function may be continuous, its discretized
version is more useful for differentiation and
integration.

3

Finite difference approximating
derivatives

◼ We use values in the neighborhood of a to
approximate the derivative

4

Three types of differences as derivative

5

◼ Forward difference

◼ Backward difference

◼ Central difference (better accuracy)

Python

6

◼ Finite difference computation: d=np.diff(f)

◼ d(i) = f(i+1)-f(i)

◼ The size of the output is one less than the size of the input

Example

7

import numpy as np
import matplotlib.pyplot as plt

step size
h = 0.1
define grid
x = np.arange(0, 2*np.pi, h)
compute function
y = np.cos(x)
compute vector of forward differences
forward_diff = np.diff(y)/h
compute corresponding grid
x_diff = x[:-1:]

compute exact solution
exact_solution = -np.sin(x_diff)
Plot solution
plt.figure(figsize = (12, 8))
plt.plot(x_diff, forward_diff, '--', \ label =
'Finite difference approximation')
plt.plot(x_diff, exact_solution, \ label =
'Exact solution’)
plt.legend()
plt.show()
compute max error
max_error = max(abs(exact_solution -
forward_diff))
print(max_error)

8

step-size (h)

m
a
x-

e
rr

o
r

Higher-order derivatives

◼ Use Taylor series

9

Sensitivity w.r.t. noise

◼ Sometimes data are contaminated with noise, i.e.,
data = theoretical value + random offset

◼ Differentiation is sensitive to noise

◼ Even if noise is small, its derivative may be significant

◼ Consider f(x) = cos(x), and f_noise = cos(x) + e*sin(wx),
where e = 0.01 and w = 100.

10

Plot of f vs. f_noise

Can you write code to compare f and f_noise in a figure?

11

Compare f’ and f’_noise

◼ Can you write code to compare their derivatives?

12

Numerical Integration

◼ Compute the integral of f(x)
given f(x)

◼ Such an integral typically
described as area under the
curve.

◼ Many applications in modeling,
predicting, and understanding of
physics.

13

Typical process to approximate integral

◼ Discretize the interval [a,b] into a numerical grid,
consisting of n+1 points with spacing h = (b-1)/n.

◼ Let xi be the corresponding ith grid points (x0=a, xn=b).
◼ We can compute f(xi), i=0,…,n.
◼ The integral is typically approximated as the sum of the

areas for each subinterval [xi, xi+1).

14

Riemanns integral

15

◼ Summing the area of rectangles

◼ Left

◼ Right

◼ Overall accuracy: O(h)

x0 x1 x2

h

Midpoint rule

◼ Overall accuracy: O(h2),
better than the previous two
methods

◼ If f(x) is given as data points,
we can’t use this rule.

16
x0 x1 x2

h

Trapezoid Rule

◼ Fits a trapezoid into each
subinterval and sums the
areas of the trapezoids.

◼ Overall accuracy: O(h2)

◼ Simplified form:

17

Simpson’s Rule

◼ Approximates the area under f(x) over two
consecutive subintervals by fitting a quadratic
polynomial through (xi-1,f(xi-1)), (xi,f(xi)), (xi+1,f(xi+1))

18

Formula

◼ Must have an even number of intervals (i.e., an odd
number of grid points)

◼ Overall accuracy: O(h4)

19

Example

◼ Use the left Riemann Integral, right Riemann Integral,
Midpoint Rule, Trapezoid Rule, Simpson’s Rule to
approximate the integration of sin(x) from 0 to pi with
11 evenly spaced grid points over the whole interval.
Compare this value to the exact value of 2.

20

Python implementations

◼ The scipy.integrate submodule

has several functions related
to integrals

◼ trapz takes an array of

function values of f on a
numerical grid and computes
the integral using trapezoid
rule

21

import numpy as np
from scipy.integrate import trapz
a = 0
b = np.pi
n = 11
h = (b - a) / (n - 1)
x = np.linspace(a, b, n)
f = np.sin(x)
I_trapz = trapz(f,x)
I_trap = (h/2)*(f[0] + 2 * sum(f[1:n-1]) +
f[n-1])
print(I_trapz)
print(I_trap)

The quad function

◼ quad(f, a, b): use different numerical techniques to

integrate by function object f from a to b

22

from scipy.integrate import quad
I_quad, est_err_quad = \
 quad(np.sin, 0, np.pi)
print(I_quad)
err_quad = 2 - I_quad
print(est_err_quad, err_quad)

	Slide 1: Computer Methods (MAE 3403)
	Slide 2: Motivation
	Slide 3: Numerical differentiation
	Slide 4: Finite difference approximating derivatives
	Slide 5: Three types of differences as derivative
	Slide 6: Python
	Slide 7: Example
	Slide 8
	Slide 9: Higher-order derivatives
	Slide 10: Sensitivity w.r.t. noise
	Slide 11: Plot of f vs. f_noise
	Slide 12: Compare f’ and f’_noise
	Slide 13: Numerical Integration
	Slide 14: Typical process to approximate integral
	Slide 15: Riemanns integral
	Slide 16: Midpoint rule
	Slide 17: Trapezoid Rule
	Slide 18: Simpson’s Rule
	Slide 19: Formula
	Slide 20: Example
	Slide 21: Python implementations
	Slide 22: The quad function

