!I- Computer Methods (MAE 3403)

Numerical differentiation and
integration

Numerical methods in engineering with Python 3
Python Programming and Numerical Methods



i Motivation

= Many systems change over time, space and other
dimensions of interest. Such changes are modelled as
function derivatives.

= In practice, the function may not be known or the
function may be implicitly known by data points.

= Can we compute derivatives numerically rather than
analytically?



:_h Numerical differentiation

= Compute df(x)/dx numerically
= Numerical grids: linspace in 1-D
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= Although a function may be continuous, its discretized
version is more useful for differentiation and
integration.



Finite difference approximating

i derivatives

f(a) = lim f(z)—f(a)

r—a

= We use values in the neighborhood of a to
approximate the derivative
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$ Three types of differences as derivative

s Forward difference
f (37]) f( J+1) f(mj)
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s Backward difference
f(mg) f(%) f(ma 1)
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» Central difference (better accuracy)
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$ Python

= Finite difference computation: d=np.diff(f)
= d(i) = f(i+1)-f(Q)

m The size of the output 1s one less than the size of the mput



Example

Import numpy as np
import matplotlib.pyplot as pit

# step size

h=0.1

# define grid

X = np.arange(0, 2*np.pi, h)

# compute function

Yy = np.cos(X)

# compute vector of forward differences
forward_diff = np.diff(y)/h

# compute corresponding grid

x_diff = x[:-1:]

# compute exact solution
exact_solution = -np.sin(x_diff)

# Plot solution

plt.figure(figsize = (12, 8))
plt.plot(x_diff, forward_diff, '--', \ label =
'Finite difference approximation')
plt.plot(x_diff, exact_solution, \ label =
'Exact solution”)

plt.legend()

plt.show()

# compute max error

max_error = max(abs(exact_solution -
forward_diff))

print(max_error) 7
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i Higher-order derivatives

= Use Taylor series
R (x) R (xy) |
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:_L Sensitivity w.r.t. noise

= Sometimes data are contaminated with noise, i.e.,
data = theoretical value + random offset

= Differentiation is sensitive to noise
= Even if noise is small, its derivative may be significant

= Consider f(x) = cos(x), and f_noise = cos(x) + e*sin(wx),
where e = 0.01 and w = 100.
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i Plot of f vs. f noise

Can you write code to compare f and f_noise in a figure?
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$ Compare f" and f’_noise

= Can you write code to compare their derivatives?

2.0 1 = Derivative cos(x) + noise
—— Derivative of cos(x)
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i Numerical Integration

= Compute the integral of f(x) S / f(a)d

given f(x) ft
= Such an integral typically /ﬂ

described as area under the
curve.

= Many applications in modeling,
predicting, and understanding of ‘ b
physics.

> T
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i Typical process to approximate integral

= Discretize the interval [a,b] into a numerical grid,
consisting of n+1 points with spacing h = (b-1)/n.

s Let x; be the corresponding ith grid points (x,=a, x.=b).
= We can compute f(x), i=0,...,n.

s The integral is typically approximated as the sum of the
areas for each subinterval [x;, x., ).
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:_h Riemanns integral

= Summing the area of rectangles
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— = Overall accuracy: O¢h)
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= Overall accuracy: O(h?),
better than the previous two
methods

= If f(X) is given as data points,
we can't use this rule.
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:_L Trapezoid Rule

= Fits a trapezoid into each
subinterval and sums the
areas of the trapezoids.

fa f(z)dz ~ 37 h () 2( +1)

\_

= Overall accuracy: O(h?) 2

= Simplified form: o T

J; f@)de = (flwo) +2 (XI5 F(@0) + fan))
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:_L Simpson’s Rule

= Approximates the area under f(x) over two
consecutive subintervals by fitting a quadratic

polynomial through (X;.;,f(X;.1)), (X, f(X;)), (Xir1,f(Xis1))

o X1 4] Tj—1 Tj Tj41
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:_L Formula

= Must have an even number of intervals (i.e., an odd
number of grid points)

[ e~ f(a:o>+4( 3 f(a:@->)+2( 3 f(wz-))+f(ivn) |

i=1,i odd

1=2,7 even

= Overall accuracy: O(h%) o




i Example

s Use the left Riemann Integral, right Riemann Integral,
Midpoint Rule, Trapezoid Rule, Simpson’s Rule to
approximate the integration of sin(x) from O to pi with
11 evenly spaced grid points over the whole interval.
Compare this value to the exact value of 2.
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:_h Python implementations

. . import numpy as np
= The scipy.integrate SUbMOAUI€ from scipy.integrate import trapz

has several functions related a =0

to integrals 2 - 'II;-Pi
= trapz takes an array of h=(b-a)/(n-1)
function values of fon a x = np.linspace(a, b, n)

: : f = np.sin(x)
numerical grid and computes | tan; - trapz(fx)
the integral using trapezoid 1_trap = (h/2)*(f[0] + 2 * sum(f[1:n-1]) +
rule fln-1])
print(I_trapz)
print(I_trap) 51



:_h The quad function

= quad(f, a, b): use different numerical techniques to
integrate by function object f fromatob

from scipy.integrate import quad

I_quad, est_err_quad =\
quad(np.sin, 0, np.pi)

print(I_quad)

err_quad = 2 - I_quad

print(est_err_quad, err_quad)
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