Additional Document: Cooperative Driving between Autonomous Vehicles and Human-driven Vehicles Considering Stochastic Human Input and System Delay

Sanzida Hossain¹, Jiaxing Lu², He Bai¹ and Weihua Sheng²

Abstract— This document presents additional information for the formulation of cooperative driving between autonomous vehicles (AVs) and human-driven vehicles (IHVs) considering stochasticity in human inputs and system delay from different sources presented in [1].

HUMAN INPUT TRANSITION MODEL CONSTRUCTION

From the HMM, we get

Emission probability:
$$P(u_k^h|S_k, a_k)$$
 (1)

Transition probability:
$$P(S_{k+1}|S_k, a_k)$$
. (2)

Denoting by $\mathbb S$ the set of all possible states, we obtain $P(u_{k+1}^h|u_k^h,a_k)$ as

$$P(u_{k+1}^{h}|u_{k}^{h},a_{k}) = \sum_{S_{k}\in\mathbb{S}} P(u_{k+1}^{h},S_{k}|u_{k}^{h},a_{k})$$

= $\sum_{S_{k}\in\mathbb{S}} P(u_{k+1}^{h}|S_{k},u_{k}^{h},a_{k})P(S_{k}|u_{k}^{h},a_{k})$
 $\propto \sum_{S_{k}\in\mathbb{S}} P(u_{k+1}^{h}|S_{k},u_{k}^{h},a_{k})\underbrace{P(u_{k}^{h}|S_{k},a_{k})P(S_{k}|a_{k})}_{\text{Bayes' Rule}}$

From (1)–(2), u_{k+1}^h depends on S_{k+1} and a_{k+1} , and S_{k+1} depends on S_k and a_k . Assuming a transition model $P(a_{k+1}|a_k)$, we conclude that u_{k+1}^h does not depend on u_k^h when conditioned on S_k and a_k . We then obtain

$$P(u_{k+1}^{h}|u_{k}^{h},a_{k}) \propto \sum_{S_{k} \in \mathbb{S}} P(u_{k+1}^{h}|S_{k},a_{k})P(u_{k}^{h}|S_{k},a_{k})P(S_{k}|a_{k})$$

$$\propto \sum_{S_{k} \in \mathbb{S}} \left(\sum_{S_{k+1} \in \mathbb{S}} P(u_{k+1}^{h},S_{k+1}|S_{k},a_{k})\right) P(u_{k}^{h}|S_{k},a_{k})P(S_{k}|a_{k})$$

$$\propto \sum_{S_{k} \in \mathbb{S}} \left(\sum_{S_{k+1} \in \mathbb{S}} P(u_{k+1}^{h}|S_{k+1},S_{k},a_{k})P(S_{k+1}|S_{k},a_{k})\right)$$

$$\times P(u_{k}^{h}|S_{k},a_{k})P(S_{k}|a_{k}), \qquad (3)$$

¹Sanzida Hossain and He Bai are with Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, OK 74078, USA. {sanzida.hossain, he.bai}@okstate.edu

²Jiaxing Lu and Weihua Sheng are with Electrical and Computer Engineering, Oklahoma State University, Stillwater, OK 74078, USA. {jiaxing.lu,weihua.sheng}@okstate.edu where $P(u_{k+1}^h|S_{k+1},S_k,a_k)$ is further written as

$$P(u_{k+1}^{h}|S_{k+1},S_{k},a_{k}) = \sum_{a_{k+1}} P(u_{k+1}^{h},a_{k+1}|S_{k+1},S_{k},a_{k})$$

$$= \sum_{a_{k+1}} P(u_{k+1}^{h}|S_{k+1},a_{k+1},S_{k},a_{k})$$

$$\times P(a_{k+1}|S_{k+1},S_{k},a_{k})$$

$$= \sum_{a_{k+1}} P(u_{k+1}^{h}|S_{k+1},a_{k+1})P(a_{k+1}|a_{k}). \quad (4)$$

Thus, to compute $P(u_{k+1}^{h}|u_{k}^{h},a_{k})$ in (3), we need (1), (2), $P(S_{k}|a_{k})$ and $P(a_{k+1}|a_{k})$. While $P(S_{k}|a_{k})$ and $P(a_{k+1}|a_{k})$ can be learned from observations in experiments, in our simulations we assume that $P(S_{k}|a_{k})$ is a uniform distribution and that there is no transition of a_{k} , i.e.,

$$P(a_{k+1}|a_k) = \begin{cases} 1 & a_{k+1} = a_k \\ 0 & a_{k+1} \neq a_k. \end{cases}$$
(5)

At each time step, a_k can be estimated as a distribution $P(a_k)$ by a monitoring system of the driver's actions. For our simulations, we consider a simplified probability model for $P(a_k)$ given in Table I. The driver's actions include speeding up (s^u) , slowing down (s^d) , and normally driving (s^c) , and the current human action is $a_k \in \{s^d, s^c, s^u\}$ as explained in Section III.A of reference [1].

TABLE I A simplified model used for $P(a_k)$

Conditions	$P(a_k = s^d)$	$P(a_k = s^c)$	$P(a_k = s^u)$
$u_k^h \le -0.2$	0.9	0.05	0.05
$-0.2 < u_k^h < 0.2$	0.05	0.9	0.05
$u_k^h \ge 0.2$	0.05	0.05	0.9

Based on $P(a_k)$ and $P(u_{k+1}^h|u_k^h,a_k)$, we compute $P(u_{k+1}^h|u_k^h)$ as

$$P(u_{k+1}^{h}|u_{k}^{h}) = \sum_{a_{k} \in \mathbb{A}} P(u_{k+1}^{h}|u_{k}^{h},a_{k})P(a_{k}|u_{k}^{h})$$

$$\propto \sum_{a_{k} \in \mathbb{A}} P(u_{k+1}^{h}|u_{k}^{h},a_{k})P(u_{k}^{h}|a_{k})P(a_{k})$$

$$\propto \sum_{a_{k} \in \mathbb{A}} P(u_{k+1}^{h}|u_{k}^{h},a_{k}) \left(\sum_{S_{k} \in \mathbb{S}} P(u_{k}^{h}|S_{k},a_{k})P(S_{k}|a_{k})\right)$$

$$\times P(a_{k}).$$
(6)

This transition model $P(u_{k+1}^h|u_k^h)$ is used as the cHMM model in the paper [1].

References

[1] S. Hossain, J. Lu, H. Bai, and W. Sheng, "Cooperative driving between autonomous vehicles and human-driven vehicles considering stochastic human input and system delay," 2023, accepted for publication at the 21st European Control Conference (ECC), Bucharest, Romania.