Additional Document: Cooperative Driving between Autonomous Vehicles and Human-driven Vehicles Considering Stochastic Human Input and System Delay

Sanzida Hossain¹, Jiaxing Lu², He Bai¹ and Weihua Sheng²

Abstract— This document presents additional information for the formulation of cooperative driving between autonomous vehicles (AVs) and human-driven vehicles (IHVs) considering stochasticity in human inputs and system delay from different sources presented in [1].

HUMAN INPUT TRANSITION MODEL CONSTRUCTION

From the HMM, we get

$$
Emission probability: P(u_k^h | S_k, a_k)
$$
\n(1)

$$
transition probability: P(S_{k+1}|S_k, a_k). \tag{2}
$$

Denoting by S the set of all possible states, we obtain $P(u_{k+1}^h | u_k^h, a_k)$ as

$$
P(u_{k+1}^h | u_k^h, a_k) = \sum_{S_k \in \mathbb{S}} P(u_{k+1}^h, S_k | u_k^h, a_k)
$$

=
$$
\sum_{S_k \in \mathbb{S}} P(u_{k+1}^h | S_k, u_k^h, a_k) P(S_k | u_k^h, a_k)
$$

$$
\propto \sum_{S_k \in \mathbb{S}} P(u_{k+1}^h | S_k, u_k^h, a_k) \underbrace{P(u_k^h | S_k, a_k) P(S_k | a_k)}_{\text{Bayes' Rule}}.
$$

From [\(1\)](#page-0-0)–[\(2\)](#page-0-1), u_{k+1}^h depends on S_{k+1} and a_{k+1} , and S_{k+1} depends on S_k and a_k . Assuming a transition model $P(a_{k+1}|a_k)$, we conclude that u_{k+1}^h does not depend on u_k^h when conditioned on S_k and a_k . We then obtain

$$
P(u_{k+1}^h | u_k^h, a_k) \propto \sum_{S_k \in \mathbb{S}} P(u_{k+1}^h | S_k, a_k) P(u_k^h | S_k, a_k) P(S_k | a_k)
$$

$$
\propto \sum_{S_k \in \mathbb{S}} \left(\sum_{S_{k+1} \in \mathbb{S}} P(u_{k+1}^h, S_{k+1} | S_k, a_k) \right) P(u_k^h | S_k, a_k) P(S_k | a_k)
$$

$$
\propto \sum_{S_k \in \mathbb{S}} \left(\sum_{S_{k+1} \in \mathbb{S}} P(u_{k+1}^h | S_{k+1}, S_k, a_k) P(S_{k+1} | S_k, a_k) \right)
$$

$$
\times P(u_k^h | S_k, a_k) P(S_k | a_k), \qquad (3)
$$

¹Sanzida Hossain and He Bai are with Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, OK 74078, USA. {sanzida.hossain, he.bai}@okstate.edu

²Jiaxing Lu and Weihua Sheng are with Electrical and Computer Engineering, Oklahoma State University, Stillwater, OK 74078, USA. {jiaxing.lu,weihua.sheng}@okstate.edu

where $P(u_{k+1}^h | S_{k+1}, S_k, a_k)$ is further written as

$$
P(u_{k+1}^h | S_{k+1}, S_k, a_k) = \sum_{a_{k+1}} P(u_{k+1}^h, a_{k+1} | S_{k+1}, S_k, a_k)
$$

=
$$
\sum_{a_{k+1}} P(u_{k+1}^h | S_{k+1}, a_{k+1}, S_k, a_k)
$$

$$
\times P(a_{k+1} | S_{k+1}, S_k, a_k)
$$

=
$$
\sum_{a_{k+1}} P(u_{k+1}^h | S_{k+1}, a_{k+1}) P(a_{k+1} | a_k).
$$
 (4)

Thus, to compute $P(u_{k+1}^h | u_k^h, a_k)$ in [\(3\)](#page-0-2), we need [\(1\)](#page-0-0), [\(2\)](#page-0-1), $P(S_k|a_k)$ and $P(a_{k+1}|a_k)$. While $P(S_k|a_k)$ and $P(a_{k+1}|a_k)$ can be learned from observations in experiments, in our simulations we assume that $P(S_k|a_k)$ is a uniform distribution and that there is no transition of a_k , i.e.,

$$
P(a_{k+1}|a_k) = \begin{cases} 1 & a_{k+1} = a_k \\ 0 & a_{k+1} \neq a_k. \end{cases}
$$
 (5)

At each time step, a_k can be estimated as a distribution $P(a_k)$ by a monitoring system of the driver's actions. For our simulations, we consider a simplified probability model for $P(a_k)$ given in Table [I.](#page-0-3) The driver's actions include speeding up (s^u) , slowing down (s^d) , and normally driving (s^c) , and the current human action is $a_k \in \{s^d, s^c, s^u\}$ as explained in Section III.A of reference [1].

TABLE I A SIMPLIFIED MODEL USED FOR $P(a_k)$

Conditions	$(a_k = s^u)$	$P(a_k = s^c)$	$(a_k = s^u)$
	0.9	0.05	0.05
$< u^n_{\nu} < 0.2$	0.05	0.9	0.05
\boldsymbol{u}	0.05	ነ በና	0.9

Based on $P(a_k)$ and $P(u_{k+1}^h | u_k^h, a_k)$, we compute $P(u_{k+1}^h | u_k^h)$ as

$$
P(u_{k+1}^h | u_k^h) = \sum_{a_k \in A} P(u_{k+1}^h | u_k^h, a_k) P(a_k | u_k^h) \n\approx \sum_{a_k \in A} P(u_{k+1}^h | u_k^h, a_k) P(u_k^h | a_k) P(a_k) \n\approx \sum_{a_k \in A} P(u_{k+1}^h | u_k^h, a_k) \left(\sum_{S_k \in S} P(u_k^h | S_k, a_k) P(S_k | a_k) \right) \n\times P(a_k).
$$
\n(6)

This transition model $P(u_{k+1}^h | u_k^h)$ is used as the cHMM model in the paper [1].

REFERENCES

[1] S. Hossain, J. Lu, H. Bai, and W. Sheng, "Cooperative driving between autonomous vehicles and human-driven vehicles considering stochastic human input and system delay," 2023, accepted for publication at the 21st European Control Conference (ECC), Bucharest, Romania.