
Computer Methods (MAE 3403)

Chapter 1

Functions, Pseudo code, Good
practice

1
Numerical methods in engineering with Python 3

Python Programming and Numerical Methods

Functions

◼ Programming requires repeating a set of tasks

◼ Compute sin(x): math.sin(x) is a set of mathematical

operations that approximately compute sin(x)

◼ Store a sequence of instructions as a function that can
be called over and over again

◼ Most powerful use of computer programming: writing
your own functions 2

Basics

◼ Function: a sequence of instructions that performs a
specific task, a block of code that runs when called

◼ can have input arguments, output parameters

◼ math.sin(x)

◼ Sequence of instructions: body of the function

3

Built-in functions

◼ type(len)

◼ Functions from some packages/modules

◼ import numpy as np

type(np.linspace)

◼ math.sin, np.array

4

Define your own function

5

◼ Most common way: specify a function via def

 def function_name(argument_1, argument_2, ...):

  ```descriptive string ```

  # comments about the statements 
 function_statements  

        return output_parameters (optional)

◼ Optional but customary: description of the function

◼ Commenting frequently

header

body



Example

def my_adder(a, b, c): 

 """ 
 function to sum the 3 numbers 

 Input: 3 numbers a, b, c 

 Output: the sum of a, b, and c 

 author: date: 
 """ 

 # this is the summation 

 out = a + b + c 

 return out 6

◼ Indent your code (4 
spaces = one level 
of indentation)

◼ block indentation: 
select + Tab (Shift 
+ Tab)

◼ Avoid extra lines of 
code



What happens when calling a function

◼ d = my_adder(1, 2, 3) 

◼ Assignment operator works from right to left. 
1. Python finds the function my_adder.
2. my_adder takes the first input argument value 1 and assigns it to the variable 

with name a (first variable name in input argument list). 
3. Repeat the process to assign 2 and 3 to b and c in the function, respectively.
4. my_adder computes the sum of a, b, and c, which is 1 + 2 + 3 = 6.
5. my_adder assigns the value 6 to the variable out.
6. my_adder outputs the value contained in the output variable out, which is 6.
7. my_adder(1,2,3) is equivalent to the value 6, and this value is assigned to the 

variable with name d.
7



Notes

◼ Pay attention to the data types of the input arguments

◼ help(my_adder)

◼ Read the errors that Python gives you: usually tells 
you where the problem was. 

◼ You can assign function calls and mathematical 
expressions as inputs

◼ d = my_adder(np.sin(np.pi), np.cos(np.pi), np.tan(np.pi)) 

◼ d = my_adder(5 + 2, 3 * 4, 12 / 6) 

8



Multiple output parameters

◼ Separate the output parameters by commas

◼ Output returned as a tuple, unpack the returned tuple

def my_trig_sum(a, b): 

 """ 
 """ 
 out1 = np.sin(a) + np.cos(b) 

 out2 = np.sin(b) + np.cos(a) 

 return out1, out2, [out1, out2]

9

c, d, e = my_trig_sum(2, 3) 

print(f"c ={c}, d={d}, e={e}")

c =-0.0806950697747637, 
d=-0.2750268284872752, 

e=[-0.0806950697747637, -
0.2750268284872752]

unpack



Default values

def print_greeting(day = 'Monday', name = 'Qingkai’):

      print(f'Greetings, {name}, today is {day}’)

print_greeting()

print_greeting(name = 'Timmy', day = 'Friday’)

print_greeting(name = 'Alex')

10



Number of input arguments

◼ Positional vs. excess parameters

◼ def func(x1,x2,*x3):

◼ If calling this function with func(a,b,c,d,e), which 

arguments are positional and excess respectively?

11



Variable scope

◼ A function has its own 
memory block reserved for 
variables created within that 
function. 

◼ A variable with a given 
name can be assigned 
within a function without 
changing a variable with the 
same name outside the 
function. 12

def my_adder(a, b, c):
    out = a + b + c

    print(f'The value out within the function 
is {out}')
    return out

out = 1

d = my_adder(1, 2, 3)
print(f'The value out outside the function is 
{out}')



Example: intentionally confusing

◼ What will the values 
of a, b, x, y, m, and z 
be after the code is 
run?

13

def my_test(a, b):
    x = a + b

    y = x * b
    z = a + b
    m = 2

    print(f'Within function: x={x}, y={y}, z={z}')
    return x, y

a = 2
b = 3

z = 1
y, x = my_test(b, a)
print(f'Outside function: x={x}, y={y}, z={z}')



Mutable input argument

◼ If a mutable object, 
such as a list, is 
passed as input and 
modified in a function, 
the change will stay 
with the object. 

15

def squares(a):

      for i in range(len(a)):

           a[i] = a[i]**2

a = [1, 2, 3, 4]

squares(a)

print(a) # ’a’ now contains ’a**2’



Lambda statement (function)

◼ Typically for one line function

◼ Defined using the lambda keyword

  lambda arguments: expression

◼ square = lambda x: x**2 
my_adder = lambda x, y: x + y 

◼ Simplify code

16



Functions as arguments to functions

◼ Sometimes it is useful to pass a function as a variable 
to another function.

17

import numpy as np 
def my_fun_plus_one(f, x): 

      return f(x) + 1 
print(my_fun_plus_one(np.sin, np.pi/2)) 
print(my_fun_plus_one(np.cos, np.pi/2)) 

print(my_fun_plus_one(np.sqrt, 25))
print(my_fun_plus_one(lambda x: x + 2, 2))



import numpy as np 
def my_dist_xyz(x, y, z): 

""" x, y, z are 2D coordinates contained in a tuple output: d - 
list, where d[0] is the distance between x and y d[1] is the 
distance between x and z d[2] is the distance between y and z 
""" 
      def my_dist(x, y): 

""" subfunction for my_dist_xyz Output is the distance between 
x and y, computed using the distance formula """ 
            out = np.sqrt((x[0]-y[0])**2+(x[1]-y[1])**2)    

  return out 
      d0 = my_dist(x, y) 

      d1 = my_dist(x, z) 
      d2 = my_dist(y, z) 
      return [d0, d1, d2]

Nested functions

◼ my_dist defined in my_dist_xyz 
(parent function): separate 
memory block 18



Modules

◼ Store useful and related functions in modules

◼ A module is a file where the functions reside

◼ A module can be loaded as
   from module name import *

◼ Or a specific function from the module can be loaded:

   from module name import func name 

◼ Modules can have alias

   import math as m
19



Related modules

◼ math (cmath) module: most mathematical functions

◼ Different modules may have different definitions of 
the same function: sin is available from math, cmath 
and numpy. 

◼ Import selected functions:
   from math import log, sin, . . .

◼ Or import math, then use math.log, math.sin

20



numpy module

◼ Must be installed separately! 

◼ Introduces “array” (can be used to represent matrix)

21

>>> from numpy import array

>>> a = array([[2.0, -1.0],[-1.0, 3.0]])

>>> print(a) [[ 2. -1.]

[-1. 3.]]

>>> b = array([[2, -1],[-1, 3]],float)

>>> print(b) [[ 2. -1.]

[-1. 3.]]

zeros((dim1,dim2),type)

ones((dim1,dim2),type)



Plotting

◼ matplotlib.pyplot is a collection of 2D plotting functions 

similar to MATALB style functionalities. 

◼ Require separate installation

◼ Will discuss it separately.

26



Good practices

◼ Errors are unavoidable: can be frustrating

◼ What types of errors?

◼ Good practices reduce the chance of error happening

◼ Debugging tools

27



Error types

◼ Syntax errors: incorrect syntax and Python cannot 
understand, e.g., 1 = x, (1], if True, …

◼ typically Python will return an error and point out where the 

error occurred (most of the times)

◼ Exceptions/runtime errors: errors that occur during 
execution, may not be fatal

◼ 1/0 (ZeroDivisionError), print(a) (NameError), x = [2], x+2 
(TypeError) …

◼ Run a program multiple times, different settings, etc.
28



Logic error

◼ Code runs but does not produce expected solution

◼ Easy to generate but hard to find: 

◼ meticulously go through each line of your code. 

◼ No assumptions.

◼ Use Python Debugger
29

def my_bad_factorial(n): 
      out = 0

      for i in range(1, n+1): 
           out = out*i 
      return out



Avoid errors

◼ Start with an outline of your program (pseudo code)

◼ Address all the tasks

◼ In the order in which it should perform them

◼ Time spent planning is time well spent

◼ Do not rush to programming without planning out tasks

◼ Design your program in terms of modules/functions 
that accomplish a small well-defined task and know as 
little information of other function as possible

30



Test everything often

◼ Test modules/functions using test cases (including 
corner cases) for which you know the answers. 

◼ Prime number: test with 0 (corner case), 1 (corner case), 2 

(simple case), 97 (complicated case), etc.

◼ Build your confidence. 

◼ Especially important if other modules depend on the 

current module.

◼ Test often: perform intermediate tests to make sure it 
is correct up to certain steps. 

31



Keep your code clean

◼ Write your code in the fewest instructions possible, 
e.g., writing a complete expression rather than steps

◼ Using variables rather than values

32

import numpy as np 
s = 0 

a = np.random.rand(10) 
for i in range(10): 
     s = s + a[i]

import numpy as np
n = 10 

s = 0 
a = np.random.rand(n) 
for i in range(n): 

     s = s + a[i]

n = 10
s = sum(np.random.rand(n))



Keep your code clean

◼ Use short descriptive names for variables: n vs. 
theNumberofRandomNumbersToBeAdded

◼ Comment frequently: no comment vs. over-comment

33



Catch runtime errors

◼ Handle errors or exceptions gracefully: try-except

34

try: 
     code block 1 

except ExceptionName: 
     code block 2

x = '6’ 
try: 

     if x > 3: 
           print('X is larger than 3’) 
except TypeError: 

     print("x was not a valid number. Try again...")

x = 's’ 
try: 

      if x > 3: 
            print(x) 
except: 

     print(f'Something wrong with x = {x}')



raise an exception

◼ Program will display an exception and stop running.

◼ Do not overuse try-except or raise: they don’t replace 
good programming practice.

35

x = 10 
if x > 5: 

      raise(Exception('x should be less or equal to 5'))



Use of a debugger (with a breakpoint)

36

◼ Breakpoint

◼ Stepping over

◼ Stepping in

See debug examples



Python: a computational tool

◼ Applications in lots of engineering and science applications
◼ Finding solutions to various types of equations (MAE 3013)

◼ Ax = b (linear equations): Gauss elimination, Gauss Seidel, Jacobi 
◼ g(x) = 0 (nonlinear equation): iterative method, secant method, …

◼ Using Python packages (numpy, scipy)

◼ Integration of g(x): Simpson’s rule, using python packages (quad)

◼ Ordinary differential equations (ODE): odeint
◼ Specific problems: Least square fit, Fourier transform

◼ Machine learning
◼ Tools: plotting, read from/write to files, load data, interpolation



How to code an algorithm in Python (or 
any programming language)? 

◼ Computer programs don’t replace you: you are the critical thinker! Programs do the computation 
for you. You obtain and examine the answers and iterate!

◼ Start with understanding the process of solving a given problem
◼ Formulate and identify the problem mathematically (if needed)

◼ Create a pseudo code before the actual coding: a ‘recipe’ on paper (not in your mind)
◼ The identified process is converted to “sequential”, “basic” steps that are programming-friendly. For 

example, for loops, if-else, etc. 
◼ Think about and look up what data structure best suits your need: lists, numbers, strings, etc.

◼ Program the pseudo code in Python: pay attention to syntax, indices, etc.
◼ If you find logic errors, update your pseudo code (the ‘recipe’) first

◼ Debugging: first make sure your program compiles/runs, then debug based on the output of the 
programs. 
◼ Debug step by step: since you know how to solve the problem, you can expect the answers at each 

step. You may need to update the pseudo code!
◼ Use simple problems (you know the answers or you can verify the answers by another program that is 

known to be correct!) to begin testing your program
◼ Then increase the complexity of the testing problems!  (blind test, corner cases)

◼ Optimization of the code/pseudo code


	Slide 1: Computer Methods (MAE 3403)
	Slide 2: Functions
	Slide 3: Basics
	Slide 4: Built-in functions
	Slide 5: Define your own function
	Slide 6: Example
	Slide 7: What happens when calling a function
	Slide 8: Notes
	Slide 9: Multiple output parameters
	Slide 10: Default values
	Slide 11: Number of input arguments
	Slide 12: Variable scope
	Slide 13: Example: intentionally confusing
	Slide 15: Mutable input argument
	Slide 16: Lambda statement (function)
	Slide 17: Functions as arguments to functions
	Slide 18: Nested functions
	Slide 19: Modules
	Slide 20: Related modules
	Slide 21: numpy module
	Slide 26: Plotting
	Slide 27: Good practices
	Slide 28: Error types
	Slide 29: Logic error
	Slide 30: Avoid errors
	Slide 31: Test everything often
	Slide 32: Keep your code clean
	Slide 33: Keep your code clean
	Slide 34: Catch runtime errors
	Slide 35: raise an exception
	Slide 36: Use of a debugger (with a breakpoint)
	Slide 37: Python: a computational tool
	Slide 38: How to code an algorithm in Python (or any programming language)? 

