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Abstract— We present a practical asynchronous data fusion
model for networked agents to perform distributed Bayesian
learning without sharing raw data. Our algorithm employs
unadjusted Langevin dynamics with a gossip-based protocol
for sampling, coupled with an event-triggered mechanism to
further reduce communication between gossiping agents. These
mechanisms drastically reduce communication overhead and
help avoid bottlenecks commonly experienced with distributed
algorithms. In addition, the algorithm is expected to increase
resilience to occasional link failure. We establish mathematical
guarantees for our algorithm and demonstrate its effectiveness
via a numerical experiment.

Index Terms— Distributed Bayesian learning, Unadjusted
Langevin algorithm, Asynchronous Gossip protocol, Event-
triggered mechanism, Multi-agent systems

I. INTRODUCTION

Distributed learning in machine learning applications has
gained much attention recently due to ubiquitous applications
in sensor networks and multi-agent systems where the data
is distributed at multiple computing nodes, yet a common
model needs to be trained. Such situations arise when
constrained by memory, inefficient data sharing means, or
confidentiality requirements for sensitive data. Overfitting
may occur when isolated agents train on their local data.
Comprehensive parameter updates across isolated models
also introduces inefficiencies for reaching threshold accuracy
levels when compared to unconstrained information sharing.
Distributed learning aims to leverage the full distributed data
by a coordinated training among all the agents where the
agents are allowed to share partial information (usually the
learned model parameters or their gradients) without sharing
any raw data. The information shared is significantly lower
compared to sharing the raw data and does not compromise
confidentiality.

In this paper, we focus on Bayesian inference techniques
since they have been established as a reliable method for
training machine learning models involving large datasets
and a large number of trainable parameters. Additionally,
since they are based on sampling from posterior distri-
butions, they provide a built-in mechanism to quantify
uncertainty. However, computing exact posteriors in most
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practical scenarios is analytically or computationally impos-
sible. In this paper we employ Markov Chain Monte Carlo
(MCMC) with an unadjusted Langevin algorithm (ULA) as
the sampling method. Convergence of centralized Langevin
method has been established for strongly log-concave pos-
terior [1]–[4] and for non log-concave posterior [5]–[12].
Distributed [13]–[16] and federated [17], [18] formulations
of various Bayesian based algorithms have been developed
as well. However, most literature on distributed Bayesian
learning deals with synchronized updates by all agents at any
given time [13]–[16], which is not practical. Synchronized
updates have immense communication overhead at every
time instant and may be stymied due to lagging agents.

We seek to develop an algorithm to circumvent the afore-
mentioned shortcomings. Motivated by optimization litera-
ture [19], [20], we introduce the concept of asynchronous
gossip updates to the ULA. The gossip algorithm allows
asynchronous updates where at any time only two agents
make updates and share information. In addition to reduced
communication overhead, it is more robust to occasional link
failures since at most a single link is active at any time.

Furthermore, we incorporate an event-triggered informa-
tion sharing scheme where information between the two
active agents does not need to be exchanged unless some
event is triggered, further mitigating the communication
overhead issue. We present rigorous convergence proofs for
the proposed algorithm. The results obtained in this paper
are of practical relevance as they model the information
exchange over a graph much more pragmatically. To make
the updates truly asynchronous, we propose using a constant
step size which does result in a bias in the convergence. How-
ever, bias exists even for centralized implementations [21].
Detailed discussion on how to minimize the bias in the
convergence and one illustrative example supporting our
results are provided.

The rest of the paper is organized as follows. We start with
an introduction of the Bayesian learning framework and the
ULA algorithm in Section II. In Section III, we introduce the
key aspects of the gossip protocol and the event-triggering
scheme followed by mathematical guarantees in Section IV.
Section V provides further insight of our results, while we
conclude with a numerical example in Section VI.

Notation: An n× n identity matrix is denoted as In. 1n

denotes a n-dimensional vector of all ones and ei is a n-
dimensional vector with all 0s except the i-th element being
1. The L2-norm of a vector x is denoted as ∥x∥2. Given
matrices A and B, A⊗B denotes their Kronecker product.
For a graph G (V, E) of order n, V ≜ {v1, . . . , vn} represents
the agents or nodes and the communication links between



the agents are represented as E ≜ {ε1, . . . , εℓ} ⊆ V × V . A
Gaussian distribution with a mean µ ∈ Rm and a covariance
Σ ∈ Rm×m

≥0 is denoted by N (µ,Σ).

II. PRELIMINARIES

A. Bayesian inference framework

Consider a network of n agents characterized by an
undirected communication graph G(V, E) of order n. The
entire data X = {Xi}ni=1 is distributed among n agents
with the i-th agent having access only to its local dataset
Xi = {xj

i}
Mi
j=1, where xj

i ∈ Rd.
Bayesian learning provides a framework for leaning un-

known parameters by sampling from a posterior distribution.
The probability of the unknown parameter w given the
data X , denoted by p(w|X), is the posterior distribution
of interest. Assuming that the individual datasets of the
agents are conditionally independent, the target posterior
distribution p∗(w) ≜ p(w|X) is given by

p(w|X) ∝ p(w)

n∏
i=1

p(Xi|w) =

n∏
i=1

p(Xi|w)p(w)
1
n . (1)

Thus, the objective of the inference problem is to determine
p∗. As analytical solutions to p∗ are often intractable, MCMC
algorithms aim at sampling from p∗.

B. Sampling method

We use the unadjusted Langevin algorithm (ULA) which
is a first order gradient method for sampling from p∗. Define
an energy function E(w) = − log(p(w|X)). It follows
from (1) that for some constant C,

E(w,X) =

n∑
i=1

Ei(w,Xi) + C, (2)

where Ei(w) = − log p(Xi|w) − 1
n log p(w). In the cen-

tralized sampling scenario, the ULA is given as

w(k + 1) = w(k)− α∇E(w(k),X) +
√
2αv(k), (3)

where α > 0 is the gradient step size, the gradient is
given as ∇E = −∇ log p (X|w)−∇ log p(w), and v(k) ∼
N (0dw

, Idw
) is an injected Gaussian noise. A distributed

version of (3) was introduced in [13] which is given by

wi(k + 1) = wi(k)− βk

∑
j∈Ni

(wi(k)−wj(k))

− αkn∇Ei(wi(k),Xi) +
√
2αkvi(k),

(4)

where wi(k) is the sample of the i-th agent, Ni denotes
the set of neighbors of the i-th agent, αk is the time-
dependent gradient step size, βk is a time-dependent fu-
sion weight, the individual agent’s gradients are given as
∇Ei = −∇ log p (Xi|wi) − 1

n∇ log p(wi), and vi(k) ∼
N (0dw

, nIdw
).

III. ASYNCHRONOUS GOSSIP WITH EVENT-TRIGGERING

A. Gossip protocol

One of the major drawbacks of the algorithm in (4) is
the communication overhead presented by the fusion term∑

j∈Ni
(wi(k)−wj(k)). This necessitates communication

between all the neighbors at all time instants in a syn-
chronized fashion. We propose the asynchronous gossip
protocol [20] which circumvents this issue by needing only
two agents to update their samples at any given time instant.

Consider that each agent has local clock that ticks at a
Poisson rate of 1 at the tick of which, it randomly chooses
one of its neighbors and together they make updates. We
assume that no two ticks of the local clocks of the agents
coincide. For analysis, we consider a universal clock which
ticks at a rate of n and is indexed by k. Suppose that the
k-th tick of the universal clock coincides with the ik-th
agent’s local clock, then agent ik chooses agent jk from
Nik uniformly at random. The probability of agent i, ∀ i ∈
{1, · · · , n}, being active at the k-th tick of the universal
clock is given by pi =

1
n

(
1 +

∑
j∈Ni

1
|Nj |

)
. Note that pi,

∀i, is time-invariant and depends on the graph only. Thus,
it can be computed and stored by each agent a priori and
subsequently used when needed.

Let Ak = {ik, jk} be the set of two agents activated at the
k-th tick of the universal clock. Denote by τi(k) the number
of times agent i has been active until the k-th tick of the
universal clock. The update algorithm for the active agents,
i.e., i ∈ Ak, is given by

wi(τi(k) + 1)=wi(τi(k))−β
∑
j∈Ak

(
wi(τi(k))−wj(τj(k))

)
− nα

2pi
∇Ei(wi(τi(k)),Xi) +

√
2αvi(τi(k)), (5)

where α and β are constant gradient step size and fu-
sion weight, respectively, ∇Ei = −∇ log p (Xi|wi) −
1
n∇ log p(wi), and vi is the injected noise given by vi ∼
N

(
0dw ,

n2

2 Idw

)
. Define δi(k) as the indicator function such

that δi(k) = 1 if i ∈ Ak and otherwise δi(k) = 0. Thus,
for agent i, ∀ i ∈ {1, · · · , n}, the gossip-based sampling
protocol (5) can be represented in the universal clock index
k as

wi(k + 1) = wi(k)− δi(k)β
∑
j∈Ak

(wi(k)−wj(k))

− δi(k)
nα

2pi
∇Ei(wi(k),Xi) + δi(k)

√
2αvi(k).

(6)

For any agent i, wi(τi(k)) = wi(k). For all the ticks of the
universal clock between the τi(k)

th and the (τi(k)+1)th ticks
of the i-th agent’s local clock, wi(k) remains unchanged.

B. Event-triggering mechanism

We next introduce an event-triggering mechanism that
further reduces the need to exchange samples at all the
time instants between the active agents. Unless an agent
is triggered, it does not communicate its sample to its
gossiping neighbor and the neighbor proceeds with the last
communicated sample of that agent. Denote by ŵi(k) the
last communicated sample of i-th agent until the the kth
tick of the universal clock. Agent i is triggered again to
communicate wi(k) if and only if δi(k) = 1 and

∥ei(k)∥22 = ∥wi(k)− ŵi(k)∥22 > ϵi(k). (7)



Incorporating the event-triggering mechanism (7) into (6),
we propose the following sampling algorithm for agent i, ∀i

wi(k + 1) = wi(k)− δi(k)β
∑
j∈Ak

(ŵi(k)− ŵj(k))

− δi(k)
nα

2pi
∇Ei(wi(k),Xi) + δi(k)

√
2αvi(k).

(8)

We choose the triggering threshold ϵi(k) as

ϵi(k) =
µe
i

(τi(k) + 1)δ
e
i
≤ µe

(k + 1)δe
, (9)

where δei , µ
e
i > 0 are agent-specific parameters indepen-

dently chosen to control the event-triggering rate, while
µe = 1

(2n)δe
maxi{µe

i} > 0 and δe = mini{δei } > 0.
The last inequality in (9) holds for sufficiently large k with
probability 1 (see [22, Lemma 3]).

IV. RESULTS

We present the key results of our analysis in this section.
A. Consensus and average dynamics

We define the following notation. w(k) =
[
w1(k)

⊤, . . . ,

wn(k)
⊤]⊤,v(k) = [

v1(k)
⊤, . . . ,vn(k)

⊤]⊤, e(k) =[
e1(k)

⊤, . . . , en(k)
⊤]⊤ and ∇E(k) =

[
∇E1(w1(k),X1)

⊤,

. . . ,∇En(wn(k),Xn)
⊤]⊤.

We rewrite (8) in the vector form as

w(k + 1)=Wkw(k)− αnSk∇E(k) +
√
2αS′

kv(k)

+ β(Lk ⊗ Idw
)e(k),

(10)

where Lk = (eik − ejk)(eik − ejk)
⊤, Wk =

(
In − βLk

)
⊗

Idw
, Sk =

(
1

2pik
eike

⊤
ik
+ 1

2pjk
ejke

⊤
jk

)
⊗ Idw

and S′
k =

(eike
⊤
ik

+ ejke
⊤
jk
) ⊗ Idw . Let w̄(k) = 1

n

∑n
i=1 wi(k) and

w̃i(k) = wi(k)− w̄(k). Define the consensus error w̃(k) =[
w̃1(k)

⊤, . . . , w̃n(k)
⊤]⊤ and note that w̃(k) = (M ⊗

Idw)w(k) where M = In − 1
n1n1

⊤
n . Pre-multiplying (10)

with (M ⊗ Idw
) yields the evolution of the consensus

dynamics:

w̃(k + 1) = Wkw̃(k) + (M ⊗ Idw)g(k), (11)

where g(k) = −αnSk∇E(k) +
√
2αS′

kv(k) +
β(Lk ⊗ Idw

)e(k) and (M ⊗ Idw
)Wk = Wk(M ⊗ Idw

).
Next, we derive the dynamics of the averaged sample

w̄(k) generated at each tick of the universal clock as

w̄(k + 1) = w̄(k)− α∇̂E(k) +
√
2αv̄(k), (12)

where ∇̂E(k) =
∑

i∈Ak
∇Ei(wi(k),Xi) and v̄(k) =

1
n

∑
i∈Ak

vi(k) ∼ N (0dw , Idw). The ∇̂E(k) can be consid-
ered a stochastic gradient and is related to the full gradient
∇E(w̄(k)) =

∑n
i=1 ∇Ei(w̄(k),X) by

∇̂E(k)=∇E(w̄(k))− ξ(w̄(k),Ak) + ζ(w̄(k), w̃(k),Ak),
(13)

where

ξ(w̄(k),Ak) = ∇E(w̄(k))−
∑
i∈Ak

1

2pi
∇Ei(w̄(k),Xi), (14)

ζ(w̄(k), w̃(k),Ak) =
∑
i∈Ak

1

2pi

(
∇Ei(wi(k),Xi)

−∇Ei(w̄(k),Xi)
)
. (15)

The ξ(k) represents the stochasticity from the gossip protocol
while ζ(k) denotes the gradient noise due to consensus error.
It follows that Ept(Ak)[ξ(k)] = 0.

B. Assumptions

Assumption 1. The gradients ∇Ei are Lipschitz continuous
with Lipschitz constant Li > 0 for all i ∈ {1, . . . , n}, i.e.,
∀wa,wb ∈ Rdw , we have

∥∇Ei(wa,Xi)−∇Ei(wb,Xi)∥2 ≤ Li∥wa −wb∥2. (16)

From (16) it follows that for E(w,X) in (2), there exists
some L̄ > 0 such that ∀wa,wb ∈ Rdw we have

∥∇E(wa,X)−∇E(wb,X)∥2 ≤ L̄∥wa −wb∥2. (17)

For the function G(w,X) defined as

G(w,X) =

n∑
i=1

∇Ei(wi,Xi), (18)

where w =
[
w⊤

1 , . . . ,w
⊤
n

]⊤
, we also conclude from (16)

that there exists L = maxi{Li} > 0 such that ∀wa,wb ∈
Rndw we have

∥G(wa,X)−G(wb,X)∥2 ≤ L∥wa −wb∥2. (19)

Assumption 2. The overall interaction topology of the n
networked agents is given as a connected, undirected graph
denoted by G(V, E).

For a connected undirected graph G(V, E), the expected
graph Laplacian, denoted by L̄ = E[Lk], is a positive semi-
definite matrix with exactly one eigenvalue at 0 correspond-
ing to the eigenvector 1n.

Assumption 3. There exists some 0 < µg < ∞ such that for
any w ∈ Rdw , we have

sup
i∈{1,...,n}

E[∥∇Ei(w,X)∥2] ≤
√
µg. (20)

Note that (20) can be equivalently represented as

E[∥∇E(w,X)∥22] ≤ nµg. (21)

Assumption 3 has been used in many non-convex optimiza-
tion references.

Assumption 4. The target distribution p∗ satisfies a log-
Sobolev inequality (LSI) defined as follows. For any smooth
function g satisfying

∫
g(w̄)p∗(w̄) dw̄ = 1, a constant

ρU > 0 exists such that∫
g(w̄) log g(w̄)p∗(w̄) dw̄ ≤ 1

2ρU

∫
∥∇g(w̄)∥2

g(w̄)
p∗(w̄) dw̄,

(22)

where ρU is the log-Sobolev constant.

Assumption 5. The second moment of the stochastic noise
due to gossip in the average gradient ξ is bounded, i.e., for



all k ≥ 0 there exists some 0 < C
ξ
< ∞ such that

Ept(Ak)[∥ξ(w̄(k),Ak)∥22] ≤ C
ξ
. (23)

Condition 1. The step size α is chosen to satisfy

8α3L̄4

(1− exp(−αρU ))
< ρU . (24)

Condition 2. The fusion weight β is chosen to satisfy

β(1− β) <
1

2λn−1(L̄)
, (25)

where λn−1(L̄) is the second smallest eigenvalue of L̄.

Note that the left hand side of (24) decreases monotoni-
cally with a decreasing α and approaches 0 as α approaches
0. Thus, given a ρU , there always exists an α∗ > 0 such that
for any α ∈ (0, α∗], (24) holds. Similarly, for given 1

2λn−1(L̄)

(constant for a graph) a β∗ > 0 such that (25) holds for any
β ∈ (0, β∗].

C. Consensus analysis
Theorem 1 below shows that consensus is achieved at the

rate of O
(

1
kδe

)
with an offset Y3 given after (26).

Theorem 1. Suppose that Assumptions 1–5 hold and that α
and β satisfy Conditions 1 and 2, respectively. Define λ =
1− 2β(1− β)λn−1(L̄) where λi(·) denotes the i-th largest
eigenvalue of the positive semi-definite matrix L̄ = E[Lk].
Then the consensus error w̃(k + 1) satisfies

E[∥w̃(k + 1)∥22] ≤ Y1

√
λ
k+1

+
Y2

(k + 1)δe
+ Y3, (26)

where Y1 = E[∥w̃(0)∥22] +
2β2nµe

1−
√
λ

∑t̄−1
t=0

√
λ
−(t+1)

(t+1)δe
, Y2 =

− 2β2nµe√
λ(1−

√
λ)

(
ln
√
λ+ δe

t̄+1

)−1

, Y3 =
2αn2(αµg/2pm+2dw)

(1−
√
λ)2

,

t̄ = max
{
0,
⌈

δe
| lnλ| − 1

⌉}
and pm = mini{pi}.

Proof. To analyze the consensus error, we start with the
consensus dynamics in (11) and take the norm on both sides,
yielding

∥w̃(k + 1)∥2 ≤ ∥Wkw̃(k)∥2 + ∥g(k)∥2, (27)

where we used the result ∥(M ⊗ Idw
)g(k)∥2 ≤ ∥M ⊗

Idw
∥2∥g(k)∥2 = ∥g(k)∥2 since ∥M ⊗ Idw

∥2 = 1. Denoting
by Fk be the filtration generated by randomized sampling of
{w(ℓ)}kℓ=0, it can be shown that the conditional expectation
E[∥Wkw̃(k)∥22|Fk] follows the relation below:

E[∥Wkw̃(k)∥22|Fk] = w̃(k)⊤E[W⊤
k Wk]w̃(k) ≤ λ∥w̃(k)∥22.

(28)

Note from (25) that 0 < λ. It also follows from 2β(1 −
β)λn−1(L̄) > 0 that λ < 1. The conditional expectation
E[∥g(k)∥22|Fk] can be shown to satisfy

E[∥g(k)∥22|Fk] ≤ 2

(
α2n2µg

2pm
+ 2αn2dw

)
+

2β2nµe

(k + 1)δe
.

(29)

Recall the identity (x + y)2 ≤ (θ + 1)x2 +
(
θ+1
θ

)
y2 for

any x, y, θ ∈ R and θ > 0. We use this identity with θ =√
λ
−1

− 1 > 0 on (27), subsequently take the conditional

expectation E[·|Fk], and substitute (28) and (29). Further,
taking the total expectation yields

E[∥w̃(k + 1)∥22] ≤
√
λE[∥w̃(k)∥22] +

1

1−
√
λ

2b2nµe

(k + 1)δe

+
2αn2(αµg/2pm + 2dw)

1−
√
λ

. (30)

Finally, using (30) iteratively with some additional algebra
results in the consensus error bound (26).
D. Convergence analysis

We denote by p(w̄(k)) the probability distribution of
w̄(k) admitted by the average dynamics (12) and analyze its
evolution. To do so, we first reformulate (12) as a stochastic
differential equation (SDE). For any t ∈ [tk, tk+1) where
tk = kα, the SDE form of (12) is given by

dw̄(t) = −
(
∇E(w̄(tk))− ξ(w̄(tk),Ak)

+ ζ(w̄(tk), w̃(tk),Ak)
)
dt+

√
2dB(t),

(31)

where B(t) represents a dw dimensional Brownian motion,
w̄(tk) = w̄(k), and w̃(tk) = w̃(k). Denote by pt(w̄) the
distribution of w̄(t) from (31). Since the gradient terms
in (31) remain constant within t ∈ [tk, tk+1), ptk+1

(w̄) is
the same as p(w̄(k + 1)) from (12), ∀k ≥ 0. Thus, we
analyze the evolution of pt(w̄) from (31). Let yk,1 = w̄(tk),
yk,2 = w̃(tk), yk,3 = Ak, and yk = [y⊤k,1, y

⊤
k,2, y

⊤
k,3]

⊤. Using
the Fokker Planck (FP) equation for the SDE in (31) we have
∂pt(w̄|yk)

∂t
= −∇ ·

[
pt(w̄|yk)

(
−∇E(yk,1) + ξ(yk,1, yk,3)

− ζ(yk)
)]

+∇2pt(w̄|yk). (32)

Marginalizing out yk from (32), we get the evolution of
pt(w̄) for t ∈ [tk, tk+1) corresponding to any k ≥ 0 as

∂pt(w̄)

∂t
= ∇ ·

[ ∫∫ ∑
yk,3∈A

pt(w̄|yk)
(
∇E(w̄(tk)) + ζ(yk)

− ξ(yk,1, yk,3)
)
p(yk)dyk,1 dyk,2

]
+∇2pt(w̄), (33)

where A is the finite set of all possible values of yk,3 = Ak,
i.e., the set of all possible gossiping partners at any time
instant of the universal clock.

We next employ the KL divergence between the proba-
bility distribution pt(w̄) and the target distribution p∗(w̄),
denoted by F (pt(w̄)), to prove convergence of the posterior
of w̄ in (12). Specifically, F (pt(w̄)) is defined as

F (pt(w̄)) =

∫
pt(w̄) log

(
pt(w̄)

p∗(w̄)

)
dw̄. (34)

Theorem 2 below establishes that F (pt(w̄)) decreases at
the rate of O

(
1

kδe

)
to a bias B given in (40). The proof

makes use of (33) and the LSI (22) to obtain Ḟ (pt(w̄)) and
subsequently bound F (pt(w̄)).

Theorem 2. Suppose that all the assumptions and conditions
in Theorem 1 hold. Then

1) If αρU + ln
√
λ < 0, then



F (ptk+1
(w̄)) ≤ exp

(
− αρU (k + 1))

)
F (pt0(w̄))

+ Ȳ
′

1 exp(−αρUk) +
Ȳ

′

2

(k + 1)δe
+B, (35)

2) if αρU + ln
√
λ > 0, then

F (ptk+1
(w̄)) ≤ exp

(
− αρU (k + 1))

)
F (pt0(w̄))

+ Ȳ
′′

1

√
λ
k+1

+
Ȳ

′

2

(k + 1)δe
+B, (36)

where Ȳ
′

1 , Ȳ
′′

1 , Ȳ
′

2 and B are positive constants given by

Ȳ
′

1 =

(
1− 1

αρU + ln
√
λ

)(
α3L̄2L2

pm
+

αL2

4pm

)
Y1, (37)

Ȳ
′′

1 =

√
λ
k+1

αρU + ln
√
λ

(
α3L̄2L2

pm
+

αL2

4pm

)
Y1, (38)

Ȳ
′

2 =

(
αρU − δe

k̄2

)−1 (
α3L̄2L2

pm
+

αL2

4pm

)
Y2, (39)

B =
ν

1− exp(−αρU )
, (40)

in which ν = 2α2L̄2dw + 2α3L̄4Cw̄ + 4α3L̄2C
ξ
+(

α3L̄2L2

pm
+ αL2

4pm

)
Y3 and Y3 is given after (26).

Proof. From (34) the evolution of F (pt(w̄)) is related to
∂pt(w̄)

∂t by

Ḟ (pt(w̄)) =

∫ (
1 +∇ log

(
pt(w̄)

p∗(w̄)

))
∂pt(w̄)

∂t
dw̄. (41)

Substituting (33) into (41) and performing all the appropriate
marginalization yield

Ḟ (pt(w̄)) ≤ −1

2
Ept(w̄)

∥∥∥∥∇ log
pt(w̄)

p∗(w̄)

∥∥∥∥2
2

+ 2αL̄2dw + 2α2×

L̄2(L̄2Cw̄ + 2C
ξ
) +

(
α2L̄2L2

pm
+

L2

4pm

)
Eptk

(w̃)∥w̃(tk)∥22,

(42)

where Ept(ξ)[∥ξ(w̄(tk)w̃(tk),Ak)∥22] ≤ C
ξ

and
Ept(w̄)[∥w̄(tk)∥22] ≤ Cw̄ . Note that the existence of
Cw̄ can be explicitly proven, which is skipped due to
space constraints.. Thereafter, we employ the LSI (22) with
g(w̄) = pt(w̄)

p∗(w̄) to obtain

F (pt(w̄)) = Ept(w̄)

[
log

(
pt(w̄)

p∗(w̄)

)]
≤ 1

2ρU
Ept(w̄)

∥∥∥∥∇ log

(
pt(w̄)

p∗(w̄)

)∥∥∥∥2
2

,

(43)

which when substituted in (42) gives a recursive relation in
F (pt(w̄)) for any t ∈ [tk, tk+1) as follows:

Ḟ (pt(w̄)) ≤ −ρUF (pt(w̄)) + 2αL̄2dw + 2α2L̄4Cw̄

+ 4α2L̄2C
ξ
+

(
α2L̄2L2

pm
+

L2

4pm

)
Eptk

(w̃)∥w̃(tk)∥22.
(44)

Conducting further analysis on (44), we obtain the conver-
gence rate for (12) in two cases depending on the sign of
αρU + ln

√
λ (note that ln

√
λ < 0 since λ < 1), which are

shown in (35) and (36), respectively.

V. DISCUSSIONS

In this section, we highlight some key insights in our
results. Firstly, from (26) we get the rate of consensus as
O
(

1
kδe

)
. with a constant offset Y3 given after (26) in the

asymptotic consensus error. This results from the usage of a
constant gradient step size α. To keep Y3 low, we may choose
the step size α to be scaled as α ∝ 1

n2dw
. Also, increasing

pm reduces the Y3 as higher pm implies less randomness in
the gossip.

Secondly, we conclude from (35) and (36) that in either
case the rate of convergence is O

(
1

kδe

)
as well. It is tempting

to conclude that a high value of δe is preferable since it fos-
ters both consensus and convergence rate. However, a high δe
value results in a quicker decay of the error threshold in (9),
leading to increased communication overhead as k increases.
Thus δe is an important hyperpaprameter trading off the rate
of convergence against the communication overhead.

As observed from either (35) or (36) that, there is a
constant bias B in the KL divergence bound. From (40), the
most obvious dependence of B is on the step size α. For a
sufficiently small α, 1− exp(−αρU ) ≈ αρU . Since the least
power of α in any of the terms in ν is 2, we have ν = α2ν̄.
Hence, B ≈ αν̄

ρU
. Thus, lowering α is likely to reduce B,

however, it may also compromise the rate of convergence.
Furthermore, B linearly decreases with the reduction in C

ξ

(variance of the stochasticity of gossip), Cw̄ (variance of the
average of samples) and dw (dimension of the samples). In
addition, B ∝ n2

pm
, implying that reducing n (the number of

agents) and increasing pm (the least probability of any agent
being active) reduces the bias. This is intuitive as reducing
n or increasing pm lowers the uncertainty in the random
selection of gossiping agents which translates to a lower bias.

Finally, note that the last term of ν (given below (40))
contains the consensus error offset Y3 while the other terms
of ν are due to the variance from different sources (injected
noise, gossip stochasticity, and average of samples).

VI. NUMERICAL EXPERIMENTS

A. Gaussian mixture

We consider parameter inference of a Gaussian mixture
with tied means [23]. The Gaussian mixture is given by

θ1 ∼ N (0, σ2
1) ; θ2 ∼ N (0, σ2

2) (45)

xi ∼
1

2
N (θ1, σ

2
x) +

1

2
N (θ1 + θ2, σ

2
x), (46)

where σ2
1 = 10, σ2

2 = 1, σ2
x = 2 and w ≜ [θ1, θ2]

⊤ ∈ R2.
We draw 100 data samples xi from the model with [θ1, θ2] =
[0, 1]. These data points were equally randomly distributed
among 5 agents. The communication topology between the
agents is a ring graph.

Simulation results with 1 chain for (100000×n) iterations
is presented with: α = 1 × 10−4, β = 0.1, µe = 8 and
δe = 0.51. The samples from the gossip event-triggered algo-
rithm (8) are compared with an approximated true posterior
distribution in Figure 1. Wasserstein distances between the
sampled posterior from the approximated posterior, calcu-
lated using [24], are presented as a metric of accuracy.



The average frequency of gossiping and event-triggering
for each agent is listed in Table I which suggests that an
average (over all agents) of 60% reduction in activity is
achieved due to the gossiping protocol, while communication
is reduced by more than 80% due to event-triggering. Note
that the percentage reduction in communication due to event-
triggering is computed based on the number of times each
agent has been active.

Fig. 1: Comparison of the posteriors constructed by the 5 agents
with the actual approximate posterior. The Wassersterin distances
between the agents’ posteriors with the approximate true posterior
are: 0.1089, 0.0942, 0.0964, 0.0963, and 0.1073, respectively.

Agent# 1 2 3 4 5

gos 199481 200460 200817 199912 199328

% gos 39.9% 40.1% 40.2% 40.0% 39.9%

ET 33735 33646 33695 33457 33477

%ET 16.9% 16.8% 16.8% 16.7% 16.8%

TABLE I: Details about the frequency of gossiping and event-
triggering averaged over all 5 trials for all agents. (gos ≡ number of
times the agents have been active among the total 500000 iterations,
% gos ≡ gossip as a fraction of the total iterations; ET ≡ number
of times the agents have exchanged their samples, %ET ≡ fraction
of triggers out of the total number of times each agent had been
active).

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we propose an asynchronous, distributed
ULA algorithm for Bayesian learning via an event-triggered
gossip communication. We derive rigorous convergence
guarantees for the proposed algorithm and illustrate its ef-
fectiveness using a numerical experiment. Though we obtain
good empirical results, our mathematical analysis shows
asymptotic bias in the convergence which stems from the use
of a constant step size. Our future work involves the analysis
of gossip algorithms with diminishing step sizes and other
asynchronous algorithms for distributed Bayesian learning.
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