
Computer Methods (MAE 3403)

Chapter 3

I/O, Files

1
Numerical methods in engineering with Python 3

Python Programming and Numerical Methods

Reading/Writing Data

◼ Storing data and results of programs are important.

◼ When Python closes, all variables in the memory are lost.

◼ Data must be stored, readable by or written in a form that

can be used by other programs.

2

Open a file

f = open(filename, mode)

3

Mode:
•‘r’, this is the default mode, which opens a file for reading
•‘w’, this mode opens a file for writing, if the file does not exist, it creates a new file.
•‘a’, open a file in append mode, append data to end of file. If the file does not exist, it
creates a new file.
•‘b’, open a file in binary mode.
•‘r+’, open a file (do not create) for reading and writing.
•‘w+’, open or create a file for writing and reading, discard existing contents.
•‘a+’, open or create file for reading and writing, and append data to end of file.

After all operations, DO NOT forget: f.close()

Write to a file

f = open('test.txt', ‘w’)

for i in range(5):

 f.write(f"This is line {i}\n")
f.close()

4

f = open('test.txt', 'a’)
f.write(f"This is another line\n")

f.close()

Read a file
f = open('./test.txt', 'r')

content = f.read()

f.close()

print(content)

f = open('./test.txt', 'r')

contents = f.readlines()

f.close()

print(contents)

5

This is line 0
This is line 1

This is line 2
This is line 3
This is line 4

This is another line

type(content)
str

['This is line 0\n', 'This is line 1\n’, …]

type(content)
list

Operation on each line of a file

◼ Read only the current line

 f.readline(n)

read n characters from the line.

◼ Operation on each line:

for line in f:

 do something with line

x = []

data = open(‘sunspots.txt’, ‘r’)

for line in data:

 x.append(eval(line.split()[3]))

data.close()

6

‘sunspots.txt’

1896 05 26 40.94

1896 05 27 40.58

1896 05 28 40.20

…

Dealing with numbers and arrays

import numpy as np

arr = np.array([[1.20, 2.20, 3.00],

[4.14, 5.65, 6.42]])

np.savetxt('my_arr.txt', arr,

fmt='%.2f', header = 'Col1 Col2 Col3')

my_arr = np.loadtxt('my_arr.txt')

7

array([[1.2 , 2.2 , 3.],
[4.14, 5.65, 6.42]])

CSV (Comma-separated values) files

◼ Each line (row) is one data record and each record

contains one or more fields, separated by commas.

◼ Useable by MS Excel.

◼ Python has its own csv module.

◼ We can also use numpy package to deal with csv files.

8

Write and read a CSV file

◼ Write

import numpy as np

data = np.random.random((100,5))

np.savetxt('test.csv', data, fmt = '%.2f',
delimiter=',', header = 'c1, c2, c3, c4,

c5’)

◼ Read

my_csv = np.loadtxt('./test.csv',
delimiter=',')

9

Python can work with other files

◼ Pickle file (store dictionaries, tuples,

etc, serialize python objects)

import pickle

dict_a = {'A':0, 'B':1, 'C':2}

pickle.dump(dict_a, open('test.pkl', 'wb’))

my_dict = pickle.load(open('./test.pkl',

'rb'))

◼ JSON (JavaScript Object

Notation)

◼ language-independent

◼ less space, faster than pickle

◼ import json

◼ HDF5 (Hierarchical data

format)

◼ large amount of data

◼ data and group: folder-like

◼ import h5py

10

	Slide 1: Computer Methods (MAE 3403)
	Slide 2: Reading/Writing Data
	Slide 3: Open a file
	Slide 4: Write to a file
	Slide 5: Read a file
	Slide 6: Operation on each line of a file
	Slide 7: Dealing with numbers and arrays
	Slide 8: CSV (Comma-separated values) files
	Slide 9: Write and read a CSV file
	Slide 10: Python can work with other files

