!I- Computer Methods (MAE 3403)

Interpolation

Numerical methods in engineering with Python 3
Python Programming and Numerical Methods

i Motivation

= Least squares regression assumes errors in the data
and finds the best fit in the squared error sense

= Good data: estimate a function that goes through the
data points?

= Interpolation does that.

i Interpolation

= Given a data set of x;, and y;,,
i=1,...,n, find an estimation
function y(x) such that
y(x;) =y

= If there is a new x*, we can
predict y* = y(x™)
= X*isin the range of x's

:_h Linear interpolation

= The estimated point is assumed to lie on the line
joining the nearest points to the left and right.

s Say Xi<x<X,, then the interpolated value at x is
Vit (Yier = YD XX/ (Xi417X))

= Example: find the linear interpolation at x=1.5 based
on data x=[0,1,2] and y=[1,3,2]

i Python example

= scipy.interpolate has various interpolation functions

from scipy.interpolate import interpld

3.00 1

import matplotlib.pyplot as plt

x =10, 1, 2]

vy =11, 3, 2]

f = interpld(X, y)
y_hat = f(1.5)

print(y_hat)

2.75 1

2.50 1

2.25 1

> 2.00 1

175 1

1.50 1

1.25 1

1.00 1

Linear Interpolation at x = 1.5

000 025 050 0.75

1.00 1.25

150 175 200
5

$ Cubic Spline interpolation

= The interpolating function is a set of cubic functions,
i.e., the points (x;, y;) and (X, Yi;1) are joined via a
cubic polynomial S,(x) = ax3 + bx? + ¢x + d. for the
region [x;X;, 1.

m /1 data points, how many
cubic functions? how many total
unknown parameters? how many
Independent equations needed?

$ Answers

m Gliven n data points, how many cubic functions?
s N-1

s How many total unknown parameters?
s 4%(n-1)

s how many independent equations needed?
« 4%(n-1)

i Construction

= First, cubic functions must intersect the data points on
the left and right

| Si(Xi)=yi’ Si(Xi+1) —_ yi+1’ | —_ 1,...,n'1
= Second, each cubic function joins smoothly with its
neighbors: continuous 1st and 2"d derivatives

= S'i(Xi41)=5111(Xi11)s S"i(Xi41)=5"11(Xi44), 1 = 1,...,n-2
= TwWo more constraints: arbitrary, e.g., 2" derivatives
are zero at the endpoints: S";(xy) = S”,.1(x;,) = 0.

Python implementation: CubicSpline

Cubic Spline Interpolation

from scipy.interpolate import CubicSpline
import numpy as np

import matplotlib.pyplot as plt
X =10, 1, 2]
=[1, 3, 2]

use bc type = ‘natural’ adds the Constra/nt B ST TR e LA VE i
f = CubicSpline(x, y, bc_type='natural’)

x_new = np.linspace(0, 2, 100)
y_new = f(x_new)

:_L HW: code CubicSpline yourself

= The key is to create the A and b matrices to solve for the
unknown coefficients (a;, b;, ¢, d,, i=1,...n-1) in the cubic
polynomials (S.(x) = ax3 + bx? + cx + d, i=1,...,n-1)
= First set of constraints:
= 506)=Yiy Si(Xi11) = Yisr, 1 = 1,..,0-1
= A X3+ b2+ cxy +dy =y, ..,
An1Xn 1 + DX + ChXpg + Aoy = Vi
= AX° + b2+ +dy =y, .,
an-1Xn3 + I:)n-lxnz + Cn-lxn + dn-l = Yn

10

i 2"d and 3" sets of constraints

- S’i(xi+1)=S’i+1(Xi+1)l S"i(Xi+1)=S"i+1(Xi+1)l | = 1,...,I"I-2
| 331X22 + 2b1X2 + C]_ - 3a2X22 - 2b2X2 - C2=0,
3an_2xn_12 + an—ZXn—l T Ca - 3an—1Xn—12 B an-lxn—l — Ch1
[631X2 + 2b1 - 6a2X2 - 2b2=0
6an-ZXn—l + an-z B 6an—1Xn—1 B 2|:)n-1=0
s S"(X) =S" (X)) =0
| 6an_1Xn —+ an_]_:O

11

$ Putting everything together as Ax = b

— T
X = [al'bl'Cl'dl'aZJbZJCZ'dZ'""an—l'bn—l'cn—l'dn—l]

$ Lagrange Polynomial Interpolation

= Cubic spline: joins multiple cubic polynomials

= Lagrange polynomial L(x): finds a single polynomial
that goes through all points.

L(z) = Z?:l yi P ()
Pi(z) = H?:l,j;éi ;—_;Z

s Can you verify L(x;) = v.?

13

i Example

s Find the Lagrange basis polynomials for the data set x
=[0,1,2] and y=[1,3,2].

s Let’s find P,(x), P,(x), and P5(x) accordingly.

14

i Python illustration

import numpy as np
import numpy.polynomial.polynomial as poly

get the polynomial function

import matplotlib.pyplot as plt

Xx=1[0, 1, 2
y =11, 3, 2]
P1 coeff =
P2 coeff =

'1,-1.5,.5]
:OI 21_1]

P3_coeff =

0,-.5,.5]

P1 = po
P2 = po
P3 = po

y.Po
y.Po

y.Po

ynomia
ynomia
ynomia

(P1_coeff)
(P2_coeff)
(P3_coeff)

L = P1 + 3*P2 + 2*P3

X_nhew = np.arange(-1.0, 3.1, 0.1)

fig = plt.figure(figsize = (10,8))
plt.plot(x_new, L(x_new), 'b’, x, y, 'ro’)

15

Lagrange Polynomial

—1.0

0.0

0.5 1.0 1.5

2.0

2.5

3.0

16

:_h Simpler implementation

= lagrange function in
scipy.interpolate does

everything for us L]

D -

=

from scipy.interpolate import lagrange |
f = lagrange(x, y) 2
fig = plt.figure(figsize = (10,8)) .

plt.plot(x_new, f(x_new), 'b’, X, y, 'ro’)

—4 A

Lagrange Polynomial

3 -

2 -

-1.0 -0.5

0.0

0.5

1.0

1.5

2.0

2.5

17

3.0

:_h Newton’s polynomial interpolation

= Use a n-1 order polynomial to go through n data points

f(x) =a9+ a1(x —x9) + as(x —x0)(x — 1) + ...
+ an(x—x0)(x —21) ... (T —)

s Features: f(x)) = vy.. Thus,

f(xO):a’O:yO ap = Yo
f($1)2a0+&1(331—x0):y1 0112%

Y2—Y1 Y1 Yo
— X2—x] £1—2Q
az = —
o —XI(

18

Ys—v2 Y2—Y1 Y2—Y1 Y1—YQ
_ T3 —Tq To—T(
a3z = Ta—x
3 0

s Define divided differences

f[xlax()] — gi:zg
Flag, 2y, 30] = 2L _mie0 — Sflzaa]=florag
))

L2 —XQ L2 —X1

flze,zpe—1, - x2,x1]—flZr—1,26—2,..-,71,%0]

fleg, Te_1,...,21,20] = pra—

19

Calculate the coefficients

anp aq a9 as a4

Yo f:ﬁUhSCo: f:mg,xl,:c(): f[3?3,$2,$1,370] f[374,$3,$2,3?1,5€0]
y1 flre, x1)f|xs, 2, 21] floa, T3, 22, T1] 0
Y2 f:éUg,ZUQ:/f:ZCzL,ZUg,LUQ: 0 0
ys flxa, 3] 0 0 0
Y4 0 0 0 0

= Each element in the table can be calculated using the
two previous elements (to the left).

20

i Example

= Calculate the divided difference table for x =[-5, -1, 0, 2]
and y=[-2,6,1,3]

= Create the divided diff function based on the data to
calculate the table and return the coefficients a,, ..., a,.1?

= Create the newton poly function to evaluate the Newton'’s
polynomial at a x* based on the given data and the
calculated coefficients from divided diff ?

= Plot your results

21

14 -

22

	Slide 1: Computer Methods (MAE 3403)
	Slide 2: Motivation
	Slide 3: Interpolation
	Slide 4: Linear interpolation
	Slide 5: Python example
	Slide 6: Cubic Spline interpolation
	Slide 7: Answers
	Slide 8: Construction
	Slide 9: Python implementation: CubicSpline
	Slide 10: HW: code CubicSpline yourself
	Slide 11: 2nd and 3rd sets of constraints
	Slide 12: Putting everything together as Ax = b
	Slide 13: Lagrange Polynomial Interpolation
	Slide 14: Example
	Slide 15: Python illustration
	Slide 16
	Slide 17: Simpler implementation
	Slide 18: Newton’s polynomial interpolation
	Slide 19: Keep going
	Slide 20: Calculate the coefficients
	Slide 21: Example
	Slide 22

