
Computer Methods (MAE 3403)

Interpolation

1
Numerical methods in engineering with Python 3

Python Programming and Numerical Methods

Motivation

◼ Least squares regression assumes errors in the data
and finds the best fit in the squared error sense

◼ Good data: estimate a function that goes through the
data points?

◼ Interpolation does that.

2

Interpolation

◼ Given a data set of xi and yi,
i=1,…,n, find an estimation
function ො𝑦 𝑥 such that
ො𝑦 𝑥𝑖 = 𝑦𝑖 .

◼ If there is a new x*, we can
predict y* = ො𝑦 𝑥∗

◼ x* is in the range of xi’s

3

Linear interpolation

◼ The estimated point is assumed to lie on the line
joining the nearest points to the left and right.

◼ Say xi<x<xi+1, then the interpolated value at x is
yi+(yi+1 – yi)(x-xi)/(xi+1-xi)

◼ Example: find the linear interpolation at x=1.5 based
on data x=[0,1,2] and y=[1,3,2]

4

Python example

◼ scipy.interpolate has various interpolation functions

from scipy.interpolate import interp1d
import matplotlib.pyplot as plt
x = [0, 1, 2]

y = [1, 3, 2]

f = interp1d(x, y)

y_hat = f(1.5)

print(y_hat)

5

Cubic Spline interpolation

6

◼ The interpolating function is a set of cubic functions,
i.e., the points (xi, yi) and (xi+1, yi+1) are joined via a
cubic polynomial Si(x) = aix

3 + bix
2 + cix + di for the

region [xi,xi+1].

◼ n data points, how many
cubic functions? how many total
unknown parameters? how many
independent equations needed?

Answers

◼ Given n data points, how many cubic functions?

◼ n-1

◼ How many total unknown parameters?

◼ 4*(n-1)

◼ how many independent equations needed?

◼ 4*(n-1)

7

Construction

◼ First, cubic functions must intersect the data points on
the left and right

◼ Si(xi)=yi, Si(xi+1) = yi+1, i = 1,…,n-1

◼ Second, each cubic function joins smoothly with its
neighbors: continuous 1st and 2nd derivatives

◼ S’i(xi+1)=S’i+1(xi+1), S”i(xi+1)=S”i+1(xi+1), i = 1,…,n-2

◼ Two more constraints: arbitrary, e.g., 2nd derivatives
are zero at the endpoints: S”1(x1) = S”n-1(xn) = 0.

8

Python implementation: CubicSpline
from scipy.interpolate import CubicSpline
import numpy as np

import matplotlib.pyplot as plt
x = [0, 1, 2]
y = [1, 3, 2]
use bc_type = 'natural' adds the constraints described above
f = CubicSpline(x, y, bc_type='natural’)

x_new = np.linspace(0, 2, 100)

y_new = f(x_new)

9

HW: code CubicSpline yourself

◼ The key is to create the A and b matrices to solve for the
unknown coefficients (ai, bi, ci, di, i=1,…n-1) in the cubic
polynomials (Si(x) = aix

3 + bix
2 + cix + di, i=1,…,n-1)

◼ First set of constraints:

◼ Si(xi)=yi, Si(xi+1) = yi+1, i = 1,…,n-1

◼ a1x1
3 + b1x1

2 + c1x1 + d1 = y1 , …,
an-1xn-1

3 + bn-1xn-1
2 + cn-1xn-1 + dn-1 = yn-1

◼ a1x2
3 + b1x2

2 + c1x2 + d1 = y2, …,
an-1xn

3 + bn-1xn
2 + cn-1xn + dn-1 = yn

10

2nd and 3rd sets of constraints

◼ S’i(xi+1)=S’i+1(xi+1), S”i(xi+1)=S”i+1(xi+1), i = 1,…,n-2

◼ 3a1x2
2 + 2b1x2 + c1 - 3a2x2

2 - 2b2x2 – c2=0, …
3an-2xn-1

2 + 2bn-2xn-1 + cn-2 - 3an-1xn-1
2 - 2bn-1xn-1 – cn-1

◼ 6a1x2 + 2b1 - 6a2x2 - 2b2=0
6an-2xn-1 + 2bn-2 - 6an-1xn-1 - 2bn-1=0

◼ S”1(x1) = S”n-1(xn) = 0

◼ 6a1x1 + 2b1=0

◼ 6an-1xn + 2bn-1=0

11

Putting everything together as Ax = b

12

𝑥 = a1, b1, c1, d1, a2, b2, c2, d2, ⋯ , an−1, bn−1, cn−1, d𝑛−1
T

Lagrange Polynomial Interpolation

13

◼ Cubic spline: joins multiple cubic polynomials

◼ Lagrange polynomial L(x): finds a single polynomial
that goes through all points.

◼ Can you verify L(xi) = yi?

Example

◼ Find the Lagrange basis polynomials for the data set x
=[0,1,2] and y= [1,3,2].

◼ Let’s find P1(x), P2(x), and P3(x) accordingly.

14

Python illustration

import numpy as np

import numpy.polynomial.polynomial as poly

import matplotlib.pyplot as plt
x = [0, 1, 2]

y = [1, 3, 2]

P1_coeff = [1,-1.5,.5]

P2_coeff = [0, 2,-1]

P3_coeff = [0,-.5,.5]

15

get the polynomial function
P1 = poly.Polynomial(P1_coeff)
P2 = poly.Polynomial(P2_coeff)
P3 = poly.Polynomial(P3_coeff)
L = P1 + 3*P2 + 2*P3
x_new = np.arange(-1.0, 3.1, 0.1)
fig = plt.figure(figsize = (10,8))
plt.plot(x_new, L(x_new), 'b', x, y, 'ro')

16

Simpler implementation

◼ lagrange function in
scipy.interpolate does

everything for us

from scipy.interpolate import lagrange

f = lagrange(x, y)

fig = plt.figure(figsize = (10,8))
plt.plot(x_new, f(x_new), 'b', x, y, 'ro')

17

Newton’s polynomial interpolation

18

◼ Use a n-1 order polynomial to go through n data points

◼ Features: f(xi) = yi. Thus,

Keep going

19

◼ Define divided differences

Calculate the coefficients

20

◼ Each element in the table can be calculated using the
two previous elements (to the left).

Example

◼ Calculate the divided difference table for x =[-5, -1, 0, 2]
and y=[-2,6,1,3]

◼ Create the divided_diff function based on the data to
calculate the table and return the coefficients a0, …, an-1?

◼ Create the newton_poly function to evaluate the Newton’s

polynomial at a x* based on the given data and the
calculated coefficients from divided_diff ?

◼ Plot your results

21

22

	Slide 1: Computer Methods (MAE 3403)
	Slide 2: Motivation
	Slide 3: Interpolation
	Slide 4: Linear interpolation
	Slide 5: Python example
	Slide 6: Cubic Spline interpolation
	Slide 7: Answers
	Slide 8: Construction
	Slide 9: Python implementation: CubicSpline
	Slide 10: HW: code CubicSpline yourself
	Slide 11: 2nd and 3rd sets of constraints
	Slide 12: Putting everything together as Ax = b
	Slide 13: Lagrange Polynomial Interpolation
	Slide 14: Example
	Slide 15: Python illustration
	Slide 16
	Slide 17: Simpler implementation
	Slide 18: Newton’s polynomial interpolation
	Slide 19: Keep going
	Slide 20: Calculate the coefficients
	Slide 21: Example
	Slide 22

