
Computer Methods (MAE 3403)

Machine learning

1
Numerical methods in engineering with Python 3

Python Programming and Numerical Methods

Introduction

◼ Machine learning becomes more and more popular

◼ Python has been one of the main stream
programming languages for advancing machine
learning technologies

◼ Introduce some basic ML problems and tools

◼ Mathematics will not be covered
2

Machine learning

◼ A group of algorithms to enable the learning
capabilities of computers, so they learn from data or
past experiences.

◼ How we learn to recognize cats/dogs, play games

◼ ML applications

◼ Siri, Face recognition, ATM, email spam detectors, self-

driving cars, etc.

3

Classification of Machine Learning

4

Reinforcement learning

Supervised learning

◼ During training, we know the correct label of the data,
i.e., we know the answers of some problem instances.

◼ Use prior knowledge (labels) for learning

◼ Classification vs. regression

◼ Classification: recognize apples vs. oranges

◼ Regression: predict tomorrow’s temperature based past

◼ Discrete outcome vs. continuous outcome

5

Unsupervised learning

◼ No labels: given mixed apples and oranges without
knowing which one is which

◼ Clustering problem: use hidden characteristics of the
data to classify the data

◼ Dimensionality reduction: reduce higher-dimension
problems into lower-dimension ones.

◼ Lower-dimension problems are easier to comprehend and

visualize.

6

Components of machine learning

7

Representation of data

◼ Images, time series, documents, numerical data, etc

◼ Turn them into a format computers can use/recognize

8

◼ Each row: one data sample
(orange, apple)

◼ Each column: features (color,
shape, etc)

◼ Target: output, correct labels,
quantities

Tunable model

◼ An algorithm that learns from the data

◼ Many parameters can be tuned so that the model
performs better

◼ Different models: neural networks, support vector
machine, logistic regression, random forest, etc.

9

Optimization algorithm

◼ Main working force to tune the model.

◼ Defines an objective function and use an optimization
algorithm to optimize the objective function by
changing the parameters of the tunable model

◼ For example: objective is to minimize the error between

what the model produces and the true labels

◼ Different optimization algorithms: gradient descent,
etc.

10

Trained model

◼ After tuning the model, the trained model has the
capability to predict based on unseen data.

11

Machine learning pipeline

12

https://www.altexsoft.com/blog/machine-learning-pipeline/

Training, validation, and testing

◼ The goal: Create a machine learning model that
generalizes well to new data

◼ Never train that model on test data

◼ Training dataset (80%): learn the model

◼ Validation dataset (10%): evaluate/fine-tune the model

◼ Testing dataset (10%): evaluate the final model

13

Performance metrics

◼ Regression

o Mean Squared Error (MSE)

o Root Mean Squared Error (RMSE)

o Mean Absolute Error (MAE)

o ...

14

Classification

◼ Accuracy

o number of correct predictions divided by the total number

of predictions, multiplied by 100

◼ Confusion matrix

15

More metrics for classification

◼ Precision and Recall

o Precision: the ratio of true positives and total positives predicted

o Recall/Sensitivity/Hit-Rate: the ratio of true positives to all the
positives in ground truth

◼ ...
16

Classification

◼ Classify products into good and bad quality, emails
into good or junk, books into different categories, etc.

◼ 1) labels are provided, 2) output is categorical

17

◼ Binary classification

Feature space

◼ Let’s visualize the feature
space (two features)

◼ Classification: find the
decision boundary
(straight or curved lines)
to separate the feature
space.

18

Support vector machine (SVM)

◼ SVM: intuitive algorithm
for classification

◼ Forms a buffer from the

boundary line to the points

in both classes close to the

line (support vectors)

◼ Given a set of support
vectors, which line has the

maximum buffer.

19

20

support vectors

Python

◼ Most popular general ML package: scikit-learn

◼ Need installation

◼ Use existing data sets for classification

◼ A dataset is a dictionary like object that holds all the
data and meta-data.

◼ sorted in .data member, (n_samples, n_features) array, &

.target member

21

Preparation

◼ 50 samples of three species of
Iris (setosa, virginica, versicolor)

22

import numpy as np
import itertools

import matplotlib.pyplot as plt
from sklearn import svm, datasets
from sklearn.metrics import classification_report

Load the iris dataset

23

import the iris data
iris = datasets.load_iris()

print(iris.feature_names)
only print the first 10 samples print(iris.data[:10])
print('We have %d data samples with %d \

features'%(iris.data.shape[0], iris.data.shape[1]))

['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)']
[[5.1 3.5 1.4 0.2] [4.9 3. 1.4 0.2] [4.7 3.2 1.3 0.2] [4.6 3.1 1.5 0.2] [5. 3.6 1.4

0.2] [5.4 3.9 1.7 0.4] [4.6 3.4 1.4 0.3] [5. 3.4 1.5 0.2] [4.4 2.9 1.4 0.2] [4.9
3.1 1.5 0.1]]
We have 150 data samples with 4 features

Target

◼ A bit more preparation

24

print(iris.target_names)
print(set(iris.target))

['setosa' 'versicolor' 'virginica’]
{0, 1, 2}

let's just use two features, so that we can
easily visualize them

X = iris.data[:, [0, 2]]
y = iris.target
target_names = iris.target_names

feature_names = iris.feature_names
get the classes

n_class = len(set(y))
print('We have %d classes in the
data'%(n_class))

Visualize the data

25

let's have a look of the data first
colors = ['b', 'g', 'r’]

symbols = ['o', '^', '*’]
plt.figure(figsize = (10,8))
for i, c, s in (zip(range(n_class), colors, symbols)):

 ix = y == i
 plt.scatter(X[:, 0][ix], X[:, 1][ix],

 \ color = c, marker = s, s = 60,
 \ label = target_names[i])
plt.legend(loc = 2, scatterpoints = 1)

plt.xlabel('Feature 1 - ' + feature_names[0])
plt.ylabel('Feature 2 - ' + feature_names[2])

plt.show()

Learning using SVM

◼ Initialize the model

◼ Train the model using fit function

◼ predict on the new data using predict function

26

Initialize SVM classifier
clf = svm.SVC(kernel='linear’)

Train the classifier with data
clf.fit(X,y)
Predict on the data
clf.predict(X)

• Many different parameters for a SVM
• Typically, we don’t predict on X which

is the training data. We separate the
entire data into training and testing.
Testing data is not used in training at

all and only used for evaluation.

Decision boundary

◼ There are many other models you
can use in scikit-learn

◼ Use an Artificial Neural Network
(ANN) to do the same job

◼ Use the MLPClassifier for ANN
classifier

27

Regression

◼ Output is quantity numbers rather than categorical.

◼ Least squares regression is the simplest form.

◼ ML approaches are more flexible: can fit any functions
of data using random forest, ANN, SVM, etc.

◼ Let’s talk about ANN

28

Artificial Neural Networks (ANN)

◼ Developed to mimic how neurons in human brain works

29

◼ Neurons: circles, Arrows: links

◼ Links associated with weights

◼ 3 layers: Input layer – Hidden
layer – output layer

◼ many hidden layers

◼ Hidden layers: sum information

from previous layer, pass the

summed information to an

activation function Multi-layer ANN

W11

W12

Forward propagation and training

◼ Forward propagation: the information flows from the input
layer through links to the hidden layers, gets processed, and
then to the output layer to generate the results y.

◼ Training of ANN: use optimization algorithms to minimize the
error between the model estimates y and the true targets

◼ First, do a forward propagation to get the error

◼ Second, propagate this error backwards (chain-rule) to update the

weight parameters in each link, i.e., backpropagation.

◼ Repeat the process (“epochs”)
30

Example Generate data and visualize it

31

import numpy as np
import matplotlib.pyplot as plt

from sklearn.metrics import mean_squared_error

np.random.seed(0)
x = 10 * np.random.rand(100)

def model(x, sigma=0.3):
 fast_oscillation = np.sin(5 * x)
 slow_oscillation = np.sin(0.5 * x)

 noise = sigma * np.random.randn(len(x))
 return slow_oscillation + fast_oscillation + noise

plt.figure(figsize = (10,8))
y = model(x)
plt.errorbar(x, y, 0.3, fmt='o')

Example

32

Use ANN to fit a model (x as feature, y as
output)

from sklearn.neural_network import MLPRegressor #Multi-layer perceptron
mlp = MLPRegressor(hidden_layer_sizes=(200,200,200), \
 max_iter = 2000, solver='lbfgs', \

 alpha=0.01, activation = 'tanh', \
 random_state = 8)
xfit = np.linspace(0, 10, 1000)

ytrue = model(xfit, 0)
yfit = mlp.fit(x[:, None], y).predict(xfit[:, None])

plt.figure(figsize = (10,8))
plt.errorbar(x, y, 0.3, fmt='o’)
plt.plot(xfit, yfit, '-r', label = 'predicted', zorder = 10)

plt.plot(xfit, ytrue, '-k', alpha=0.5, label = 'true model', zorder = 10)
plt.legend()

plt.show()

33

Clustering

◼ Unsupervised learning: without labels of the data, put
the data into different groups

◼ K-means is an effective and commonly used algorithm
due to its simple idea

34

Basic idea

◼ Based on the distance of two points (e.g., Euclidean
distance), if they are close to each other, they are
similar and should be in the same group.

◼ Step 1: Randomly drop K centroids

◼ Step 2: Assign points to the K centroids

◼ Step 3: update the centroids

◼ Step 4: repeat 2 and 3 until the centroids do not move

35

Illustration

Step 1
36

Step 2

37

Step 3

Step 4 Step 5

Python implementation
from sklearn.cluster import KMeans

kmean = KMeans(n_clusters=3, random_state = 0)
kmean.fit(X)

print(kmean.labels_) # predicted labels of all data

print(kmean.cluster_centers_) # 3 centers of the clusters

new_points = np.array([[5, 2], [6, 5]])
kmean.predict(new_points) 38

39

	Slide 1: Computer Methods (MAE 3403)
	Slide 2: Introduction
	Slide 3: Machine learning
	Slide 4: Classification of Machine Learning
	Slide 5: Supervised learning
	Slide 6: Unsupervised learning
	Slide 7: Components of machine learning
	Slide 8: Representation of data
	Slide 9: Tunable model
	Slide 10: Optimization algorithm
	Slide 11: Trained model
	Slide 12: Machine learning pipeline
	Slide 13: Training, validation, and testing
	Slide 14: Performance metrics
	Slide 15: Classification
	Slide 16: More metrics for classification
	Slide 17: Classification
	Slide 18: Feature space
	Slide 19: Support vector machine (SVM)
	Slide 20
	Slide 21: Python
	Slide 22: Preparation
	Slide 23: Load the iris dataset
	Slide 24: Target
	Slide 25: Visualize the data
	Slide 26: Learning using SVM
	Slide 27: Decision boundary
	Slide 28: Regression
	Slide 29: Artificial Neural Networks (ANN)
	Slide 30: Forward propagation and training
	Slide 31: Example
	Slide 32: Example
	Slide 33
	Slide 34: Clustering
	Slide 35: Basic idea
	Slide 36: Illustration
	Slide 37
	Slide 38: Python implementation
	Slide 39

