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i Introduction

= Machine learning becomes more and more popular

= Python has been one of the main stream
programming languages for advancing machine
learning technologies

= Introduce some basic ML problems and tools
= Mathematics will not be covered



i Machine learning

= A group of algorithms to enable the learning
capabilities of computers, so they learn from data or
past experiences.

= How we learn to recognize cats/dogs, play games

= ML applications

= Siri, Face recognition, ATM, email spam detectors, self-
driving cars, etc.




Classification of Machine Learning
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i Supervised learning

= During training, we know the correct label of the data,
i.e., we know the answers of some problem instances.
= Use prior knowledge (labels) for learning

= Classification vs. regression
= Classification: recognize apples vs. oranges
= Regression: predict tomorrow’s temperature based past
= Discrete outcome vs. continuous outcome




i Unsupervised learning

= No labels: given mixed apples and oranges without
knowing which one is which

= Clustering problem: use hidden characteristics of the
data to classify the data

= Dimensionality reduction: reduce higher-dimension
problems into lower-dimension ones.

= Lower-dimension problems are easier to comprehend and
visualize.




:_L Components of machine learning
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:_L Representation of data

= Images, time series, documents, numerical data, etc

= Turn them into a format computers can use/recognize

Raw data
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m’»m% Sounds

Feature matrix (X)
n_features —>

Target
(y)

<«—— n_samples

= Each row: one data sample
(orange, apple)

= Each column: features (color,
shape, etc)

= Target: output, correct labels,
guantities
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i Tunable model

= An algorithm that learns from the data

= Many parameters can be tuned so that the model
performs better

= Different models: neural networks, support vector
machine, logistic regression, random forest, etc.



i Optimization algorithm

= Main working force to tune the model.

= Defines an objective function and use an optimization
algorithm to optimize the objective function by
changing the parameters of the tunable model

= For example: objective is to minimize the error between
what the model produces and the true labels

= Different optimization algorithms: gradient descent,
etc.
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:_L Trained model

= After tuning the model, the trained model has the
capability to predict based on unseen data.
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$ Machine learning pipeline
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https://www.altexsoft.com/blog/machine-learming-pipeline/
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i Training, validation, and testing

= The goal: Create a machine learning model that
generalizes well to new data

= Never train that model on test data

= [raining dataset (80%): learn the model

= Validation dataset (10%): evaluate/fine-tune the model
= [esting dataset (10%): evaluate the final model
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:_L Performance metrics

= Regression N

1
- Mean Squared Error (MSE) MSE = A—T;(y; — )’
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:_h Classification

= Accuracy

- humber of correct predictions divided by the total number
of predictions, multiplied by 100

= Confusion matrix

Predicted

Doesn't Have
Cancer

Has Cancer

Ground | Has Cancer TP FN
Truth Doesn't Have FP ™

Cancer
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:_L More metrics for classification

= Precision and Recall
- Precision: the ratio of true positives and total positives predicted

Cancer patients correctly identified
=) - TP

TP+FP

Cancer patients correctly identified+incorrectly labelled cancer patients as non-cancerous

- Recall/Sensitivity/Hit-Rate: the ratio of true positives to all the
positives in ground truth

P Cancer patients correctly identified

R =

TP+FN
Cancer patients correctly identified+incorrectly labelled non-cancer patients as cancerous
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i Classification

= Classify products into good and bad quality, emails
into good or junk, books into different categories, etc.
= 1) labels are provided, 2) output is categorical

Feature matrix (X) Target
n_features —— (y)

o

<« n_samples
<« n_samples

o | |8

ARSI

= Binary classification SEISIE
_
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i Feature space
Texture

= Let’s visualize the feature A
space (two features)

= Classification: find the
decision boundary
(straight or curved lines)
to separate the feature
space.

Rough >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> Smooth




$ Support vector machine (SVM)
o

Which one is = SVM: intuitive algorithm
better? . .
for classification

= Forms a buffer from the
boundary line to the points
in both classes close to the
A new data line (support vectors)

_point = Given a set of support
vectors, which line has the
maximum buffer.
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Wide buffer

Narrow buffer

support vectors
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i Python

= Most popular general ML package: scikit-learn
= Need installation

= Use existing data sets for classification

= A dataset is a dictionary like object that holds all the
data and meta-data.

= sorted in .data member, (n_samples, n_features) array, &
target member
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= 50 samples of three species of
Iris (setosa, virginica, versicolor)

iImport numpy as np

import itertools

import matplotlib.pyplot as pit
from sklearn import svm, datasets
from sklearn.metrics import classification_report
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Load the iris dataset

# Import the iris data

iris = datasets.load_iris()

print(iris.feature_names)

# only print the first 10 samples print(iris.data[:10])
print("We have data samples with \
features'%(iris.data.shape[0], iris.data.shape[1]))

['sepal length (cm)’, 'sepal width (cm)’, 'petal length (cm)’, 'petal width (cm)']
[[5.13.5140.2][493.1.40.2][4.73.21.30.2][463.11.50.2][5.3.61.4
0.2][543.91.704][463.41.40.3][5.341.50.2][44291.40.2] [4.9

3.1 1.50.1]]
We have 150 data samples with 4 features
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i Target

print(iris.target_names)
orint(set(iris.target))

'setosa’ 'versicolor' 'virginica’l
{0, 1, 2}

= A bit more preparation

# let's just use two features, so that we can
# easlly visualize them

X = iris.data[:, [0, 2]]

y = iris.target

target_names = iris.target_names
feature_names = iris.feature_names

# get the classes

n_class = len(set(y))

print("We have %¢d classes in the

data'%(n_class))
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Visualize the data

# lers have a look of the aata first
colors = ['b', 'g’, 'r']
symbols = ['0', ', "]
plt.figure(figsize = (10,8))
for i, ¢, s in (zip(range(n_class), colors, symbols)):
X =y ==
plt.scatter(X[:, O][ix], X[:, 1]1[ix],
\ color = ¢, marker = s, s = 60,
\ label = target_namesli])
t.legend(loc = 2, scatterpoints = 1)
t.xlabel('Feature 1 - ' + feature_names[0])
t.ylabel('Feature 2 - ' + feature_names[2])
t.show()

O O T O

Feature 2 - petal length (cm)
=

1 e setosa

A versicolor

L]

[ ]
»
oo ‘
*» L ]
so8.08f8sesy
L ]

L

*

4.5

5.0

5.5 6.0 6.5 7.0
Feature 1 - sepal length (cm)

1.5 8.0

25




:_L Learning using SVM

= Initialize the model
= Train the model using fit function
= predict on the new data using predict function

# Initialize SVM classifier « Many different parameters for a SVM
clf = svm.SVC(kernel='linear’)  Typically, we don’t predict on X which
# Train the classifier with data is the training data. We separate the
clf.fit(X,y) entire data into training and testing.

# Predict on the aata Testing data is not used in training at

clf.predict(X) all and only used for evaluation.
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Feature 2

:_L Decision boundary

= There are many other models you

can use in scikit-learn

ol ho
il = Use an Artificial Neural Network
4 (ANN) to do the same job

- = Use the MLPClassifier for ANN
R L classifier

4 5 6 7 8
Feature 1
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i Regression

= Output is quantity numbers rather than categorical.
= Least squares regression is the simplest form.

= ML approaches are more flexible: can fit any functions
of data using random forest, ANN, SVM, etc.

s Let’s talk about ANN
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:_L Artificial Neural Networks (ANN)

= Developed to mimic how neurons in human brain works
= Neurons: circles, Arrows: links

Input _
Output " Links associated with weights
= 3 layers: Input layer — Hidden
29)—Y  Jayer — output layer

S - input data = many hidden layers
y —output target . Hidden layers: sum information

Y - summation

g - activation function  from previous layer, pass the
summed information to an

Multi-layer ANN activation function 2



i Forward propagation and training

= Forward propagation: the information flows from the input
layer through links to the hidden layers, gets processed, and
then to the output layer to generate the results vy.

= Training of ANN: use optimization algorithms to minimize the
error between the model estimates y and the true targets
= First, do a forward propagation to get the error

= Second, propagate this error backwards (chain-rule) to update the
weight parameters in each link, i.e., backpropagation.

= Repeat the process (“epochs”) 2



i Example Generate data and visualize it

Import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import mean_squared_error

np.random.seed(0) +

X = 10 * np.random.rand(100) 2 b # +# ¢

def model(x, sigma=0.3): . H M +#t T ¢ N
fast_oscillation = np.sin(5 * x) } \ - ! w ‘*
slow_oscillation = np.sin(0.5 * x) ) ‘

-

noise = sigma * np.random.randn(len(x))
return slow_oscillation + fast_oscillation + noise | |
plt.figure(figsize = (10,8)) | | | |

y = model(x)
plt.errorbar(x, y, 0.3, fmt="0") 31




Use ANN to fit @ model (x as feature, y as

Example output)

from sklearn.neural_network import MLPRegressor #Multi-layer perceptron
mlp = MLPRegressor(hidden_layer_sizes=(200,200,200), \

max_iter = 2000, solver='Ibfgs’, \
alpha=0.01, activation = 'tanh’, \
random_state = 8)

xfit = np.linspace(0, 10, 1000)
ytrue = model(xfit, 0)
yfit = mlp.fit(x[:, None], y).predict(xfit[:, None])

D

D
D
D
D
D

t.figure(figsize = (10,8))

t.errorbar(x, y, 0.3, fmt="'0")

t.plot(xfit, yfit, -r', label = 'predicted’, zorder = 10)

t.plot(xfit, ytrue, '-k', alpha=0.5, label = 'true model’, zorder = 10)
t.legend()

t.show() 32






i Clustering

= Unsupervised learning: without labels of the data, put
the data into different groups

= K-means is an effective and commonly used algorithm
due to its simple idea
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i Basic idea

= Based on the distance of two points (e.g., Euclidean
distance), if they are close to each other, they are
similar and should be in the same group.

= Step 1: Randomly drop K centroids

= Step 2: Assign points to the K centroids

= Step 3: update the centroids

= Step 4: repeat 2 and 3 until the centroids do not move
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* Python implementation
:

om sklearn.cluster import KMeans

kmean = KMeans(n_clusters=3, random_state = 0)
kmean.fit(X)

print(kmean.labels_) # predicted labels of all data
print(kmean.cluster_centers_) # 3 centers of the clusters

new_points = np.array([[5, 2], [6, 5]])
kmean.predict(new_points) 38
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