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Introduction

◼ Machine learning becomes more and more popular

◼ Python has been one of the main stream 
programming languages for advancing machine 
learning technologies

◼ Introduce some basic ML problems and tools

◼ Mathematics will not be covered
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Machine learning

◼ A group of algorithms to enable the learning 
capabilities of computers, so they learn from data or 
past experiences. 

◼ How we learn to recognize cats/dogs, play games

◼ ML applications

◼ Siri, Face recognition, ATM, email spam detectors, self-

driving cars, etc. 
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Classification of Machine Learning
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Reinforcement learning



Supervised learning

◼ During training, we know the correct label of the data, 
i.e., we know the answers of some problem instances.

◼ Use prior knowledge (labels) for learning

◼ Classification vs. regression

◼ Classification: recognize apples vs. oranges

◼ Regression: predict tomorrow’s temperature based past 

◼ Discrete outcome vs. continuous outcome
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Unsupervised learning

◼ No labels: given mixed apples and oranges without 
knowing which one is which

◼ Clustering problem: use hidden characteristics of the 
data to classify the data

◼ Dimensionality reduction: reduce higher-dimension 
problems into lower-dimension ones. 

◼ Lower-dimension problems are easier to comprehend and 

visualize.  
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Components of machine learning
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Representation of data

◼ Images, time series, documents, numerical data, etc

◼ Turn them into a format computers can use/recognize
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◼ Each row: one data sample 
(orange, apple)

◼ Each column: features (color, 
shape, etc)

◼ Target: output, correct labels, 
quantities 



Tunable model

◼ An algorithm that learns from the data

◼ Many parameters can be tuned so that the model 
performs better

◼ Different models: neural networks, support vector 
machine, logistic regression, random forest, etc.
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Optimization algorithm

◼ Main working force to tune the model. 

◼ Defines an objective function and use an optimization 
algorithm to optimize the objective function by 
changing the parameters of the tunable model

◼ For example: objective is to minimize the error between 

what the model produces and the true labels

◼ Different optimization algorithms: gradient descent, 
etc. 
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Trained model

◼ After tuning the model, the trained model has the 
capability to predict based on unseen data. 
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Machine learning pipeline
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https://www.altexsoft.com/blog/machine-learning-pipeline/



Training, validation, and testing

◼ The goal: Create a machine learning model that 
generalizes well to new data

◼ Never train that model on test data

◼ Training dataset (80%): learn the model

◼ Validation dataset (10%): evaluate/fine-tune the model

◼ Testing dataset (10%): evaluate the final model
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Performance metrics

◼ Regression

o Mean Squared Error (MSE)

o Root Mean Squared Error (RMSE)

o Mean Absolute Error (MAE)

o ...
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Classification

◼ Accuracy

o number of correct predictions divided by the total number 

of predictions, multiplied by 100

◼ Confusion matrix
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More metrics for classification

◼ Precision and Recall

o Precision: the ratio of true positives and total positives predicted

o Recall/Sensitivity/Hit-Rate: the ratio of true positives to all the 
positives in ground truth

◼ ...
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Classification

◼ Classify products into good and bad quality, emails 
into good or junk, books into different categories, etc.

◼  1) labels are provided, 2) output is categorical
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◼ Binary classification



Feature space

◼ Let’s visualize the feature 
space (two features)

◼ Classification: find the 
decision boundary 
(straight or curved lines) 
to separate the feature 
space.
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Support vector machine (SVM)

◼ SVM: intuitive algorithm 
for classification

◼ Forms a buffer from the 

boundary line to the points 

in both classes close to the 

line (support vectors)

◼ Given a set of support 
vectors, which line has the 

maximum buffer.
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support vectors



Python

◼ Most popular general ML package: scikit-learn

◼ Need installation

◼ Use existing data sets for classification

◼ A dataset is a dictionary like object that holds all the 
data and meta-data. 

◼ sorted in .data member, (n_samples, n_features) array, & 

.target member
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Preparation

◼ 50 samples of three species of 
Iris (setosa, virginica, versicolor)
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import numpy as np 
import itertools 

import matplotlib.pyplot as plt 
from sklearn import svm, datasets 
from sklearn.metrics import classification_report



Load the iris dataset
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# import the iris data 
iris = datasets.load_iris() 

print(iris.feature_names) 
# only print the first 10 samples print(iris.data[:10]) 
print('We have %d data samples with %d \ 

features'%(iris.data.shape[0], iris.data.shape[1]))

['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)'] 
[[5.1 3.5 1.4 0.2] [4.9 3. 1.4 0.2] [4.7 3.2 1.3 0.2] [4.6 3.1 1.5 0.2] [5. 3.6 1.4 

0.2] [5.4 3.9 1.7 0.4] [4.6 3.4 1.4 0.3] [5. 3.4 1.5 0.2] [4.4 2.9 1.4 0.2] [4.9 
3.1 1.5 0.1]] 
We have 150 data samples with 4 features



Target

◼ A bit more preparation
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print(iris.target_names) 
print(set(iris.target))

['setosa' 'versicolor' 'virginica’] 
{0, 1, 2}

# let's just use two features, so that we can 
# easily visualize them 

X = iris.data[:, [0, 2]] 
y = iris.target 
target_names = iris.target_names 

feature_names = iris.feature_names 
# get the classes 

n_class = len(set(y)) 
print('We have %d classes in the 
data'%(n_class))



Visualize the data
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# let's have a look of the data first 
colors = ['b', 'g', 'r’] 

symbols = ['o', '^', '*’] 
plt.figure(figsize = (10,8)) 
for i, c, s in (zip(range(n_class), colors, symbols)): 

     ix = y == i 
     plt.scatter(X[:, 0][ix], X[:, 1][ix], 

                   \ color = c, marker = s, s = 60, 
                   \ label = target_names[i]) 
plt.legend(loc = 2, scatterpoints = 1) 

plt.xlabel('Feature 1 - ' + feature_names[0]) 
plt.ylabel('Feature 2 - ' + feature_names[2]) 

plt.show()



Learning using SVM

◼ Initialize the model

◼ Train the model using fit function

◼ predict on the new data using predict function
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# Initialize SVM classifier 
clf = svm.SVC(kernel='linear’) 

# Train the classifier with data 
clf.fit(X,y)
# Predict on the data
clf.predict(X)

• Many different parameters for a SVM
• Typically, we don’t predict on X which 

is the training data. We separate the 
entire data into training and testing. 
Testing data is not used in training at 

all and only used for evaluation. 



Decision boundary

◼ There are many other models you 
can use in scikit-learn

◼ Use an Artificial Neural Network 
(ANN) to do the same job

◼ Use the MLPClassifier for ANN 
classifier
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Regression

◼ Output is quantity numbers rather than categorical. 

◼ Least squares regression is the simplest form.

◼ ML approaches are more flexible: can fit any functions 
of data using random forest, ANN, SVM, etc.

◼ Let’s talk about ANN
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Artificial Neural Networks (ANN)

◼ Developed to mimic how neurons in human brain works
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◼ Neurons: circles, Arrows: links

◼ Links associated with weights

◼ 3 layers: Input layer – Hidden 
layer – output layer

◼ many hidden layers

◼ Hidden layers: sum information 

from previous layer, pass the 

summed information to an 

activation function Multi-layer ANN

W11
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Forward propagation and training

◼ Forward propagation: the information flows from the input 
layer through links to the hidden layers, gets processed, and 
then to the output layer to generate the results y.

◼ Training of ANN: use optimization algorithms to minimize the 
error between the model estimates y and the true targets

◼ First, do a forward propagation to get the error

◼ Second, propagate this error backwards (chain-rule) to update the 

weight parameters in each link, i.e., backpropagation.

◼ Repeat the process (“epochs”)
30



Example Generate data and visualize it
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import numpy as np 
import matplotlib.pyplot as plt 

from sklearn.metrics import mean_squared_error

np.random.seed(0) 
x = 10 * np.random.rand(100) 

def model(x, sigma=0.3): 
      fast_oscillation = np.sin(5 * x)   
      slow_oscillation = np.sin(0.5 * x)

      noise = sigma * np.random.randn(len(x))   
       return slow_oscillation + fast_oscillation + noise 

plt.figure(figsize = (10,8)) 
y = model(x) 
plt.errorbar(x, y, 0.3, fmt='o')



Example
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Use ANN to fit a model (x as feature, y as 
output)

from sklearn.neural_network import MLPRegressor #Multi-layer perceptron
mlp = MLPRegressor(hidden_layer_sizes=(200,200,200), \  
                              max_iter = 2000, solver='lbfgs', \   

                              alpha=0.01, activation = 'tanh', \ 
                              random_state = 8) 
xfit = np.linspace(0, 10, 1000) 

ytrue = model(xfit, 0) 
yfit = mlp.fit(x[:, None], y).predict(xfit[:, None]) 

plt.figure(figsize = (10,8)) 
plt.errorbar(x, y, 0.3, fmt='o’) 
plt.plot(xfit, yfit, '-r', label = 'predicted', zorder = 10) 

plt.plot(xfit, ytrue, '-k', alpha=0.5, label = 'true model', zorder = 10) 
plt.legend() 

plt.show()
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Clustering

◼ Unsupervised learning: without labels of the data, put 
the data into different groups

◼ K-means is an effective and commonly used algorithm 
due to its simple idea
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Basic idea

◼ Based on the distance of two points (e.g., Euclidean 
distance), if they are close to each other, they are 
similar and should be in the same group. 

◼ Step 1: Randomly drop K centroids

◼ Step 2: Assign points to the K centroids

◼ Step 3: update the centroids

◼ Step 4: repeat 2 and 3 until the centroids do not move
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Illustration

Step 1
36

Step 2
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Step 3

Step 4 Step 5



Python implementation 
from sklearn.cluster import KMeans

kmean = KMeans(n_clusters=3, random_state = 0) 
kmean.fit(X)

print(kmean.labels_) # predicted labels of all data

print(kmean.cluster_centers_) # 3 centers of the clusters

new_points = np.array([[5, 2], [6, 5]]) 
kmean.predict(new_points) 38
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