!'_ Computer Methods (MAE 3403)

Machine learning

Numerical methods in engineering with Python 3
Python Programming and Numerical Methods

i Introduction

= Machine learning becomes more and more popular

= Python has been one of the main stream
programming languages for advancing machine
learning technologies

= Introduce some basic ML problems and tools
= Mathematics will not be covered

i Machine learning

= A group of algorithms to enable the learning
capabilities of computers, so they learn from data or
past experiences.

= How we learn to recognize cats/dogs, play games

= ML applications

= Siri, Face recognition, ATM, email spam detectors, self-
driving cars, etc.

Classification of Machine Learning

Problem [--..
Kes labeled No
data?
\\\\A
Supervised Unsupervised : :
loarning Tt Reinforcement learning
Category_category or . _Quantity Group Group or Lower
guantity Lower Dim. Dimension

——— " : Dimensionality
Classification| |Regression| |Clustering reduction
Neural Network Support Vector Machine K-means
Logistic Regression Neural Network Gaussian Mixture PCA
Random Forest Ridge Regression DBSCAN LDA
Naive Bayes Random Forest Spectral Clustering Isomap

Support Vector Machine Lasso Hierarchical Clustering Autoencoder 4

i Supervised learning

= During training, we know the correct label of the data,
i.e., we know the answers of some problem instances.
= Use prior knowledge (labels) for learning

= Classification vs. regression
= Classification: recognize apples vs. oranges
= Regression: predict tomorrow’s temperature based past
= Discrete outcome vs. continuous outcome

i Unsupervised learning

= No labels: given mixed apples and oranges without
knowing which one is which

= Clustering problem: use hidden characteristics of the
data to classify the data

= Dimensionality reduction: reduce higher-dimension
problems into lower-dimension ones.

= Lower-dimension problems are easier to comprehend and
visualize.

:_L Components of machine learning

Data
representation

0 1 1 0 0 Tunable

10110 N Dodel
11110
Trained
Optimization | Model

algorithm - 4 é

A S

:_L Representation of data

= Images, time series, documents, numerical data, etc

= Turn them into a format computers can use/recognize

Raw data

/E—] Documen ’rs\ %"o;
’E?iﬁl Imag :’II'> l
f\J Numbe
m’»m% Sounds

Feature matrix (X)
n_features —>

Target
(y)

<«—— n_samples

= Each row: one data sample
(orange, apple)

= Each column: features (color,
shape, etc)

= Target: output, correct labels,
guantities

8

i Tunable model

= An algorithm that learns from the data

= Many parameters can be tuned so that the model
performs better

= Different models: neural networks, support vector
machine, logistic regression, random forest, etc.

i Optimization algorithm

= Main working force to tune the model.

= Defines an objective function and use an optimization
algorithm to optimize the objective function by
changing the parameters of the tunable model

= For example: objective is to minimize the error between
what the model produces and the true labels

= Different optimization algorithms: gradient descent,
etc.

10

:_L Trained model

= After tuning the model, the trained model has the
capability to predict based on unseen data.

11

$ Machine learning pipeline

3. SPLIT DATA

Test set
1. COLLECT DATA 2. PREPARE DATA 4 TRAIN MODEL
*’ “~ “’ ™ "t !
| . | I] { J
A A\ o S

Trail I'IIT'IL] st

()
)

Validation set

ITERATE

https://www.altexsoft.com/blog/machine-learming-pipeline/

2. TEST AND
VALIDATE MODEL

6. DERPLOY MODEL

12

i Training, validation, and testing

= The goal: Create a machine learning model that
generalizes well to new data

= Never train that model on test data

= [raining dataset (80%): learn the model

= Validation dataset (10%): evaluate/fine-tune the model
= [esting dataset (10%): evaluate the final model

13

:_L Performance metrics

= Regression N

1
- Mean Squared Error (MSE) MSE = A—T;(y; —)’

N
- Root Mean Squared Error (RMSE) m4E = %Z\y}- — gl

J=1

- Mean Absolute Error (MAE) e | L i(y .
Al AT j J

\ Vi3 .

14

:_h Classification

= Accuracy

- humber of correct predictions divided by the total number
of predictions, multiplied by 100

= Confusion matrix

Predicted

Doesn't Have
Cancer

Has Cancer

Ground | Has Cancer TP FN
Truth Doesn't Have FP ™

Cancer

15

:_L More metrics for classification

= Precision and Recall
- Precision: the ratio of true positives and total positives predicted

Cancer patients correctly identified
=) - TP

TP+FP

Cancer patients correctly identified+incorrectly labelled cancer patients as non-cancerous

- Recall/Sensitivity/Hit-Rate: the ratio of true positives to all the
positives in ground truth

P Cancer patients correctly identified

R =

TP+FN
Cancer patients correctly identified+incorrectly labelled non-cancer patients as cancerous

16

i Classification

= Classify products into good and bad quality, emails
into good or junk, books into different categories, etc.
= 1) labels are provided, 2) output is categorical

Feature matrix (X) Target
n_features —— (y)

o

<« n_samples
<« n_samples

o | |8

ARSI

= Binary classification SEISIE
_

O | Ot (4=t (1t [O |10 | 1o

17

i Feature space
Texture

= Let’s visualize the feature A
space (two features)

= Classification: find the
decision boundary
(straight or curved lines)
to separate the feature
space.

Rough >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> Smooth

$ Support vector machine (SVM)
o

Which one is = SVM: intuitive algorithm
better? . .
for classification

= Forms a buffer from the
boundary line to the points
in both classes close to the
A new data line (support vectors)

_point = Given a set of support
vectors, which line has the
maximum buffer.

19

Wide buffer

Narrow buffer

support vectors

20

i Python

= Most popular general ML package: scikit-learn
= Need installation

= Use existing data sets for classification

= A dataset is a dictionary like object that holds all the
data and meta-data.

= sorted in .data member, (n_samples, n_features) array, &
target member

21

= 50 samples of three species of
Iris (setosa, virginica, versicolor)

iImport numpy as np

import itertools

import matplotlib.pyplot as pit
from sklearn import svm, datasets
from sklearn.metrics import classification_report

22

Load the iris dataset

Import the iris data

iris = datasets.load_iris()

print(iris.feature_names)

only print the first 10 samples print(iris.data[:10])
print("We have data samples with \
features'%(iris.data.shape[0], iris.data.shape[1]))

['sepal length (cm)’, 'sepal width (cm)’, 'petal length (cm)’, 'petal width (cm)']
[[5.13.5140.2][493.1.40.2][4.73.21.30.2][463.11.50.2][5.3.61.4
0.2][543.91.704][463.41.40.3][5.341.50.2][44291.40.2] [4.9

3.1 1.50.1]]
We have 150 data samples with 4 features

23

i Target

print(iris.target_names)
orint(set(iris.target))

'setosa’ 'versicolor' 'virginica’l
{0, 1, 2}

= A bit more preparation

let's just use two features, so that we can
easlly visualize them

X = iris.data[:, [0, 2]]

y = iris.target

target_names = iris.target_names
feature_names = iris.feature_names

get the classes

n_class = len(set(y))

print("We have %¢d classes in the

data'%(n_class))
24

Visualize the data

lers have a look of the aata first
colors = ['b', 'g’, 'r']
symbols = ['0', ', "]
plt.figure(figsize = (10,8))
for i, ¢, s in (zip(range(n_class), colors, symbols)):
X =y ==
plt.scatter(X[:, O][ix], X[:, 1]1[ix],
\ color = ¢, marker = s, s = 60,
\ label = target_namesli])
t.legend(loc = 2, scatterpoints = 1)
t.xlabel('Feature 1 - ' + feature_names[0])
t.ylabel('Feature 2 - ' + feature_names[2])
t.show()

O O T O

Feature 2 - petal length (cm)
=

1 e setosa

A versicolor

L]

[]
»
oo ‘
*» L]
so8.08f8sesy
L]

L

*

4.5

5.0

5.5 6.0 6.5 7.0
Feature 1 - sepal length (cm)

1.5 8.0

25

:_L Learning using SVM

= Initialize the model
= Train the model using fit function
= predict on the new data using predict function

Initialize SVM classifier « Many different parameters for a SVM
clf = svm.SVC(kernel='linear’) Typically, we don’t predict on X which
Train the classifier with data is the training data. We separate the
clf.fit(X,y) entire data into training and testing.

Predict on the aata Testing data is not used in training at

clf.predict(X) all and only used for evaluation.

26

Feature 2

:_L Decision boundary

= There are many other models you

can use in scikit-learn

ol ho
il = Use an Artificial Neural Network
4 (ANN) to do the same job

- = Use the MLPClassifier for ANN
R L classifier

4 5 6 7 8
Feature 1

27

i Regression

= Output is quantity numbers rather than categorical.
= Least squares regression is the simplest form.

= ML approaches are more flexible: can fit any functions
of data using random forest, ANN, SVM, etc.

s Let’s talk about ANN

28

:_L Artificial Neural Networks (ANN)

= Developed to mimic how neurons in human brain works
= Neurons: circles, Arrows: links

Input _
Output " Links associated with weights
= 3 layers: Input layer — Hidden
29)—Y Jayer — output layer

S - input data = many hidden layers
y —output target . Hidden layers: sum information

Y - summation

g - activation function from previous layer, pass the
summed information to an

Multi-layer ANN activation function 2

i Forward propagation and training

= Forward propagation: the information flows from the input
layer through links to the hidden layers, gets processed, and
then to the output layer to generate the results vy.

= Training of ANN: use optimization algorithms to minimize the
error between the model estimates y and the true targets
= First, do a forward propagation to get the error

= Second, propagate this error backwards (chain-rule) to update the
weight parameters in each link, i.e., backpropagation.

= Repeat the process (“epochs”) 2

i Example Generate data and visualize it

Import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import mean_squared_error

np.random.seed(0) +

X = 10 * np.random.rand(100) 2 b # +# ¢

def model(x, sigma=0.3): . H M +#t T ¢ N
fast_oscillation = np.sin(5 * x) } \ - ! w ‘*
slow_oscillation = np.sin(0.5 * x)) ‘

-

noise = sigma * np.random.randn(len(x))
return slow_oscillation + fast_oscillation + noise | |
plt.figure(figsize = (10,8)) | | | |

y = model(x)
plt.errorbar(x, y, 0.3, fmt="0") 31

Use ANN to fit @ model (x as feature, y as

Example output)

from sklearn.neural_network import MLPRegressor #Multi-layer perceptron
mlp = MLPRegressor(hidden_layer_sizes=(200,200,200), \

max_iter = 2000, solver='Ibfgs’, \
alpha=0.01, activation = 'tanh’, \
random_state = 8)

xfit = np.linspace(0, 10, 1000)
ytrue = model(xfit, 0)
yfit = mlp.fit(x[:, None], y).predict(xfit[:, None])

D

D
D
D
D
D

t.figure(figsize = (10,8))

t.errorbar(x, y, 0.3, fmt="'0")

t.plot(xfit, yfit, -r', label = 'predicted’, zorder = 10)

t.plot(xfit, ytrue, '-k', alpha=0.5, label = 'true model’, zorder = 10)
t.legend()

t.show() 32

i Clustering

= Unsupervised learning: without labels of the data, put
the data into different groups

= K-means is an effective and commonly used algorithm
due to its simple idea

34

i Basic idea

= Based on the distance of two points (e.g., Euclidean
distance), if they are close to each other, they are
similar and should be in the same group.

= Step 1: Randomly drop K centroids

= Step 2: Assign points to the K centroids

= Step 3: update the centroids

= Step 4: repeat 2 and 3 until the centroids do not move

35

* Python implementation
:

om sklearn.cluster import KMeans

kmean = KMeans(n_clusters=3, random_state = 0)
kmean.fit(X)

print(kmean.labels_) # predicted labels of all data
print(kmean.cluster_centers_) # 3 centers of the clusters

new_points = np.array([[5, 2], [6, 5]])
kmean.predict(new_points) 38

Feature 2 - petal length (cm)
iy

n

L

3
i
3
* k|
T A
w * **
o,

i ****
A A *
ufl"' &
Ak
A A Ak gk A A
A
‘iiiu
A
A Ak
A ta
A
A A
Ak
™
e 0
* @
"
i ™
AR X
. ™
™
5 b 7 3

Feature 1 - sepal length (cm)

Ln

Feature 2 - petal length (cm)
L +=

P

]
i1
* *
* A
" L
A
*** **
]
e ¥ *
l**ti .l.ll.l.
bk
* hu A :.l.: Ak
A
A ;.l. ad
& I.'.l.
dk
i
L
® o
e ® e setosa
& _
b a5 ® 4 versicolor
o I
@ * virginica
> 6 7 8

Feature 1 - sepal length (cm)

39

	Slide 1: Computer Methods (MAE 3403)
	Slide 2: Introduction
	Slide 3: Machine learning
	Slide 4: Classification of Machine Learning
	Slide 5: Supervised learning
	Slide 6: Unsupervised learning
	Slide 7: Components of machine learning
	Slide 8: Representation of data
	Slide 9: Tunable model
	Slide 10: Optimization algorithm
	Slide 11: Trained model
	Slide 12: Machine learning pipeline
	Slide 13: Training, validation, and testing
	Slide 14: Performance metrics
	Slide 15: Classification
	Slide 16: More metrics for classification
	Slide 17: Classification
	Slide 18: Feature space
	Slide 19: Support vector machine (SVM)
	Slide 20
	Slide 21: Python
	Slide 22: Preparation
	Slide 23: Load the iris dataset
	Slide 24: Target
	Slide 25: Visualize the data
	Slide 26: Learning using SVM
	Slide 27: Decision boundary
	Slide 28: Regression
	Slide 29: Artificial Neural Networks (ANN)
	Slide 30: Forward propagation and training
	Slide 31: Example
	Slide 32: Example
	Slide 33
	Slide 34: Clustering
	Slide 35: Basic idea
	Slide 36: Illustration
	Slide 37
	Slide 38: Python implementation
	Slide 39

