!'_ Computer Methods (MAE 3403)

Ordinary Differential Equations
(ODE)

Numerical methods in engineering with Python 3
Python Programming and Numerical Methods



i Motivation

= Differential equations describe relationships between a
function and its derivatives

= Widely used in modelling systems in every
engineering and science field

= Car’s motion, pendulum, spacecraft, air vehicle, HVAC

= Finding exact solutions to a differential equation is
hard.

= Numerical solutions are critical




i Differential equations

= Describe the relationships of f(x) and its derivatives.

= Ordinary differential equations (ODE): single
independent variable (x)

= An nth order ODE:
I (a;,f(a:) df () d*f(z) d°f(z) d”—lf(w)) _ d"f(=)




i Examples

= The motion of the angle in the
presence of gravity can be described as

ldiﬁgt) = —mygsin(0(t)).

s Second-order acceleration model

d2
d]igt) = a(t)




:_L Two main problems

= Initial value problems (IVP)

= Boundary value problems (BVP)



:_L Initial value problems

= For an nth order ODE, the initial value is the known

value for the 0t to (n-1)th derivatives at x = 0, i.e,,
f(0), f1(0), ..., fin-1)(0).

df (z) d*f(x) d3f(x d* 1 f(x d"™ f(x
F (0, 42, 540, 0 ) - g
= IVP: finding a solution to the ODE given an initial
value.

= Notation: f/(t) = fV(t) = f(t) = L



i Rewrite the ODE to “first-order”

= Numerical methods designed for first-order DEs.

fN ) = F (¢, £(8), fO @), fO ), fO),.... fD (1))
O T FO()
] ) F(t) F()
f(t) dS(t) _| SO | _ I2(t)
£ (1) & | 0 | FO)
B ASI() @ ] L F s, 00, @)
S(t) = f(?’)(t) - [ Sa(t) | First-order ODE
. P for S(t)!
(n—1) = S5 (1) » nth order ODE
S (t) => n first-order
| F(t,51(8), S2(t), - - -, Sn—1(t)) | coupled ODEs




Simple model to describe population of
rabbits r(t) and wolves w(t)

Zg—gﬂ = 4r(t) — 2w(t)
w (T
i = r(t) + w(t)

s0=| ) |

astt) _,

dt




More examples: two coupled 1st-order

$ ODE

dh; 5
iy Aj— = —— —
y ? ey R (hy — ha)
Ay "{ A A =gmi + — My — ) ——h
"-.ilrl 1 -II‘ r'r o P I dr q ‘ Hl 1 I RI 1




$ One 2nd-order ODE
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Two 2nd-order

miX) =ci(xy = xy) + klx; = x)

Mai; = =Xy = Xp) = kylx; — x5 )+ k(¥ = x3)

Danm lesel
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:_L Solving ODE: The Euler Method

= Suppose we have an ODE system explicitly given
S(t) =F(t,S(t))
= Also given is the initial condition 5(%,)

= Define a numerical grid [t,,t] with spacing h. Let the
ith grid point t = ih and t; = Nh.

= Explicit Euler Method: starting with j=0 and 5(t;)
S(tj+1) = S(t;) + hF(t;, S(¢5))
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i What's happening?

Store S ASAEL,R in an array, S.

Compute SEtRPRS AR FRLES

Store S ESEItE In S.

Compute SEt,RRS AhFRLES .

Store S RSEItE In S.

Compute S@t ZRS, pBhFEL, S, .

Store SpESAL A In S.

S is an approximation of the solution to the IVP.
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i Example

df(t)/dt = et with f(0)=-1. Explicit solution: f(t) = -e*

Can you use the explicit Euler method to compute the
solution of f(t) from t=0to t = 1 with h = 0.1? Compare
the solution to the explicit solution in a plot. How about h
= 0.017?

What conclusions can you draw from this example?
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matplotlib.pyplot plt
numpy np

L =

euler_int(f, f@, a, b, h):
F - [f@]

i

W oo =~ Oh N

= 2
TV -~

F.append(F[-1] + h * f(x))
F
X = np.arange{®, 1, @.01)
y = -np.exp(-x)

=
o =] O n

.plot{x, y, 'r-."', label="truth')

M =
= o

0.1

[J
=

x: np.exp(-x)

euler_int(f, -1, 0, 1, h)
.plot{np.arange(®, 1+h, h), F1, 'k--', label=f'h={h}")
0.01

euler_int(f, -1, @, 1, h)
.plot{np.arange(®, 1+h, h), F2, 'b-', label=f'h={h}')
.legend()
.grid()
.show()
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http://tpcg.io/_A5NKPC
http://tpcg.io/_A5NKPC

:_L Implicit Euler Method

= Explicit method: only requires information at t; to
compute the state at t;,

S(tj1) = S(t;) + hF(t;,5(t5))
= Implicit method:

S(tjp1) = S(t;) + hF (L1, 5(tj41))
= Another relevant method: trapezoidal formula

S(tjp1) = S(t;) + % (F(t;, S(t;)) + F(tj11,S(tj11)))
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:_L Example
@:{ 0 HS@) F(t;,S(t))) ’
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= Explicit formula 0 1 1 h
S(tj+1):S(tj)+h[ ~g ]S(tj)z [ _% 1 ]S(tg)
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r l S(tjv1) = S(t;), S(tjr1) = {

gh 1
= Trapezoidal formula
| —hL17'r 1k
S(t;11) = { o 12 } { b i }S(tj).

21
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Solving ODE

§ hccuracy: ability to get

close to the true solution
= Stability: ability to keep the* | =
error from growing as it .
iIntegrates over time.

= We solve the pendulum
equation using Euler
explicit, implicit and 2
trapezoidal formula. 3

o(t)
o




i Better schemes to solve ODEs

= Predictor-correct methods: improve the accuracy by

querying the F multiple times at different locations
(predictions) and using a weighted average of the
results (correction) to update the state.

= Midpoint method:
Predictor step: S (¢; + %

SN—

= S(t;) + 5F(t;,5(t;))

S(t;) +hF (t; + 5,5 (t; + 5))

>

Corrector step: S(t;4+1)
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:_L Runge Kutta Methods (RK methods)

= Better accuracy if we use higher-order of derivatives
S(tiv1) = S(t; +h) = S(t;) + 5 (t;)h+ 48" (t))h* + - - + S (¢;)R"
= RK methods avoid computing higher-order derivatives:
2nd order RK with ¢y = ¢ =0.5, p=¢q = 1:
S(t+h)=25(t)+c1F(t,S(t))h + coF[t + ph, S(t) + qhF(t,S(t))]h

4th order RK method: O(h*)
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:_L Python ODE solvers

m scipy.integrate.solve 1vp Or scipy.integrate.odemt

solve_ivp(fun, t_span, sO, method = 'RK45’, t_eval=None)

m fun: takes the function F(t, S(t)), t span: integration interval
[t0, tf], sO: mitial state, method: different integration
methods, t eval takes in the times to store the computed

solution, must be sorted and lie in t span.
= Also can set tolerances atol, rtol (default 1e-6, 1e-3)

= odeint: works similarly, check the documentation on its use
21



0.8
0.6
Example o

0.4 -
import matplotlib.pyplot as plt 02 -
import numpy as np
from scipy.integrate import solve_ivp 00
F = lambda t, s: np.cos(t)
t_eval = np.arange(0, np.pi, 0.1) 0.0015 |
sol = solve_ivp(F, [0, np.pi], [0], t_eval=t_eval)
hlt.figure(figsize = (12, 4)) o O
plt.subplot(121) S 0.0005
plt.plot(sol.t, sol.y[0]) — 0.0000 -
DE.X age:gltszt)’) " ~0.0005 -
plt.ylabe
Hlt.subplot(122) ~0.0010 1
plt.plot(sol.t, sol.y[0] - np.sin(sol.t)) ...

[ I

5,




:_L solve_ivp vs. odeint

= odeint uses Isoda from Fortran package to solve ODEs

= solve ivp iS more general, containing multiple
methods, including Isoda, but also others like BDF.

= solve ivp is reported slower than odeint.
= Recent Python release suggests using solve 1vp
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$ One 2nd-order ODE

MmA +cx +kx — f

% k e cx

TLT L

l def ode_system(X, t, m,c,k,fmag ):

#define any numerical parameters (constants)
# these params were stored in a Llist, and must be passed in the correct order!

- 3
hﬁ

#define the forcing function equation
f=fmag*np.sin(2%*t)

x=X[0]; xdot=X[1] # copy from the state array to nicer names

#write the non-trivial equatin
xddot= (1/m) * (f-c*xdot-k*x)

return [xdot,xddot]



5

Spring-Mass-Damper Dynamics - Forced Response
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— Velocity
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Time, 5

def ode system(X, t, m,c,k,fmag ):
#define any numerical parameters (constants)

# these params were stored in a List, and must be passed in the

#define the forcing function equation
f=fmag*np.s1in(2*t)

x=X[0]: xdot=x[1] # copy from the state array to nicer names

#write the nmon-trivial eguatin
xddot= (1/m) * (f-c*xdot-k*x)

return [xdot,xddot]

t = np.linspace(e, 18, 200) #time goes from @ to 19 seconds

ic=[1,0]

#define the model parameters

m=1 # the mass

c=4 # damping (shock absorber)

k=16 # the spring

fmag = 5 # the magnitude of the forcing function

¥ = odeint{ode system, ic, t,args=(m,c,k,fmag))

plt.plot(t, x[:,8], 'b-', label
plt.plot(t, x[:,1], 'r-", label
plt.legend(loc = "lower right")
plt.xlabel('Time, s")
plt.ylabel('Position and velocity')

plt.title( spring-mass-Damper Dynamics - Forced')
plt.show()

‘Position')
‘velocity ')

10 Spnng-Mass-Damper Dynamics - Free Response
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:_L Schedule

= Exam on Oct. 30
- 2 Problems
- Useful materials

= HW 5 due on Nov. 5
= The week of Nov. 4

= Final exam: Friday, Dec. 13, 8-9:50am, ATRC 102
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i Template for using solve ivp

Fo (1) =

= Write down your ODE

F (t, f() FO@), fA), £ (),
FO@) T FO()
%) FA@)
F@ | )
FO@ | ()
f("() F (&, ft), fO),..., fH()

D)

28



00 N VR W N

10
11
12
13

14
15
16
17
18
19
20
21
22

import matplotlib.pyplot as plt
import numpy as np

from scipy.integrate import solve_ivp

def ode_system(t, S, paraml, param2):

pl paraml

p2

param2

x = S[9]
xdot = S[1]

xXddot =

return [xdot, xddot]

25
26
27
28
29
30

31
32
33
34

35
36
37
38
39
40

41

42

43
i3

ic
10
tf

+
Il

paraml

param2

sol =

[@,0]

0

3

np.linspace(to, tf, 100)

noou
N

solve_ivp(ode_system, [t@, tf], ic, t_eval = t_, args

=(paraml, param2))

t = sol.t
S = sol.y

plt.plot(t, S[O,:], label="this is the first state (x) in S over

time")

plt.plot(t, S[1,:], label="this is the second state (xdot) in S

over time')
plt.legend()
plt.grid()
plt.show()



ode_system ivp(t, S, carparams, roadparams):

myi) =00l —xy) + iz, — xq)
ml = carparams[9] Wl ¥y = —-I‘."l[.'i'.'-n —.'I.']_:l —.Ir:]i.'!l.'-: - .'I.']_:l _I_rl':_||1|_. - X4
m2 = carparams[1] - " . - - -
cl = carparams[2]
kl = carparams|[3]
k2 = carparams[4]
ymag = roadparams[0] Body
5 i |
. I_I_ SN
y = ymag * np.sin(2 * t) F

o,

p= .
x1 - S[e] : ITI 1H'IWI1 |
xidot - S[1] ::iT_lu. | | )W

x2 - slal l'-"'"-. I::—::—'-::. _,.-"f B o
x2dot = S[3] .____,_.-—':_-'1"'_

.'r[‘
xlddot = (1 / ml) * (cl * (x2dot - xldot) + k1 * (x2 - x1)) Darum level

x2ddot = (1 / m2) (-c1 * (x2dot - xldot) - k1 * (x2 - x1)

http://tpcg.io/_4Z5GG9
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i More about ODE solvers

= Stiffness of an ODE: A stiff ODE is difficult to solve
numerically (takes longer, not stable, small steps).

= Particularly for systems with very different time/spatial
scales, e.qg., a very stiff spring
= In solve ivp, use "RK45” or "RK23" methods
for non-stiff problems, use “"Radau” or "BDF"
methods for stiff problems.
= Try "RK45”, If it fails, it’s likely a stiff problem. -

v
=5 Stiffness



:_L Boundary value problems

= An ODE with a set of constraints (boundary conditions)
d2f(:c) __ df(x) - 3
dr2 ~—  dx
= IVP: specify f(0) and f'(0) and find f(x) for x > 0 given the
ODE.

= BVP: specify f(0) and f(20) and find f(x) for x > 0 given the
ODE. Would be easy if we were given (0) as in IVP

= In general, th order ODE requires 1 constraints.

34



Generic formulation
r (a;.’f(w) df (z) d2f(z) d°f(z) d“—1f<sc)) _ d"f(z)

 dx ' dx?2 " dx3 ' dxn—1 dx™

= X in a region [a,b], we need n boundary conditions at
value a and b.

= For 2 order case, we have different cases
= f(@) and f(b) are given
= f'(@) and f'(b) are given
= f(@) and f'(b) are given or f(b) and f'(a) are given

Two-point BVP

35



i Example

= Design of a cooling pin fin i

= Consider both convection //
and radiation

= Steady state temperature To
AR p
distribution T(x) /// _
Cfig ar(T —Ts) — ap(T* = T%) =0 T,

= T(0)=To, T(L) =T,

36




:_L The shooting methods

s Transform the BVP to an IVP and solve it.

= [terative method: trial and error, enhanced with root
finding. Say we are given f(a)=f, and f(b)=f,.
= Guess f'(a)=d. Together with f(a) = f_, solve the IVP.
= Obtain f(b)=g, which may not equal to f,.
= Adjust the initial guess and repeat (Goal: f, =q)

_ e
— = -
-

» Last step: root finding? | L-==iTiio-o




i Example

= Launch a rocket so that it reaches 50 m at 5 seconds.
What should be the velocity at launching (no drag)?

= System: d?y(t)/dt?=-g, y(0)=0 and y(5) = 50. Need to
find y'(0)?
= Analytically we can solve it y'(0)=34.5.

= Numerically, using the shooting method with root
finding (e.g., secant method).

38



i Python

def objective(v0):
sol = solve_ivp(F, [0, 5], [yO, v0], t_eval = t_eval)

y = sol.y[0]
return y[-1] - 50

v0, = secant(objective, 10, 11)
print(v0)

39



$ Python BVP solver

m scipy.integrate.solve bvp

solve_bvp(fun, bc, x, y, p=None, S=None, fun_jac=None, bc_jac=None, tol=0.001, m
ax_nodes=1000, verbose=0, bc_tol=None)

s fun: stmilar to 1vp, fun(x,y) or fun(x,y,p)

m bc: boundary conditions

= X: Initial mesh

= y: mitial guess at the mesh nodes

43



$ Example

from scipy.integrate import solve_bvp

Import numpy as np

# element 1. the ODE function
def ode(t,y):

" define the ode system "

return np.array([y[1], np.cos(t) - 9*y[O]])
# element 2: the boundary condition function

def bc(ya,yb):

" define the boundary conditions "
# ya are the initial values

# yb are the final values

# each entry of the return array will be set to zero
return np.array([ya[l] - 5, yb[0] + 5/3])

v’ + 9y = cos(t),

y'(0) =5,
y(pi) = - 5/3 http://tpcg.io/_DNZFYR

# element 3: the time domain.
t steps =100

t = np.linspace(0,np.pi,t_steps)
# element 4: the initial guess.
yO = np.ones((2,t_steps))

# Solve the system.

sol = solve_bvp(ode, bc, t, y0)

import matplotlib.pyplot as plt

# here we plot sol.x instead of sol.t
plt.plot(sol.x, sol.y[0])

plt.xlabel('t")

plt.ylabel('y(t)")

plt.show() 44



y(t)

0.0

= fun remains the same as
ivp problem

= Must provide bc: 2 arrays
representing initial and

final values. bc evaluate
to zero.

0.3 1.0

= Pass a linspace of [t,, t]

= Pass an initial guess for
. T all values
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i Notes

= sol.sol is a callable function. Plug in any value or
numpy array, e.g., sol.sol(np.linspace), sol.sol(float),
sol.sol(list).

= Pay attention to the initial values. Small changes can
lead to large difference in the final approximations.

= BVP with free parameters can also be addressed.
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