
Computer Methods (MAE 3403)

Ordinary Differential Equations
(ODE)

1
Numerical methods in engineering with Python 3

Python Programming and Numerical Methods

Motivation

◼ Differential equations describe relationships between a
function and its derivatives

◼ Widely used in modelling systems in every
engineering and science field

◼ Car’s motion, pendulum, spacecraft, air vehicle, HVAC

◼ Finding exact solutions to a differential equation is
hard.

◼ Numerical solutions are critical

2

Differential equations

◼ Describe the relationships of f(x) and its derivatives.

◼ Ordinary differential equations (ODE): single
independent variable (x)

◼ An nth order ODE:

3

Examples

◼ The motion of the angle in the
presence of gravity can be described as

◼ Second-order acceleration model

4

Two main problems

◼ Initial value problems (IVP)

◼ Boundary value problems (BVP)

5

Initial value problems

◼ For an nth order ODE, the initial value is the known
value for the 0th to (n-1)th derivatives at x = 0, i.e.,
f(0), f(1)(0), …, f(n-1)(0).

◼ IVP: finding a solution to the ODE given an initial
value.

◼ Notation:

6

Rewrite the ODE to “first-order”

7

◼ Numerical methods designed for first-order DEs.

• First-order ODE
for S(t)!

• nth order ODE
=> n first-order
coupled ODEs

Examples

8

Simple model to describe population of
rabbits r(t) and wolves w(t)

More examples: two coupled 1st-order
ODE

9

One 2nd-order ODE

10

Two 2nd-order
ODE

11

Solving ODE: The Euler Method

◼ Suppose we have an ODE system explicitly given

◼ Also given is the initial condition S(t0)

◼ Define a numerical grid [t0,tf] with spacing h. Let the
ith grid point ti = ih and tf = Nh.

◼ Explicit Euler Method: starting with j=0 and S(t0)

12

1. Store 𝑆 𝑆 𝑡 in an array, 𝑆.
2. Compute 𝑆 𝑡 𝑆 ℎ𝐹 𝑡 𝑆

3. Store 𝑆 𝑆 𝑡 in 𝑆.
4. Compute 𝑆 𝑡 𝑆 ℎ𝐹 𝑡 𝑆 .
5. Store 𝑆 𝑆 𝑡 in 𝑆.
6. ⋯⋯

7. Compute 𝑆 𝑡𝑓 𝑆 − ℎ𝐹 𝑡 − 𝑆 − .
8. Store 𝑆 𝑆 𝑡𝑓 in 𝑆.
9. 𝑆 is an approximation of the solution to the IVP.

What’s happening?

13

Example

df(t)/dt = e-t with f(0)=-1. Explicit solution: f(t) = -e-t

Can you use the explicit Euler method to compute the
solution of f(t) from t=0 to t = 1 with h = 0.1? Compare
the solution to the explicit solution in a plot. How about h
= 0.01?

What conclusions can you draw from this example?

14

http://tpcg.io/_A5NKPC
15

http://tpcg.io/_A5NKPC
http://tpcg.io/_A5NKPC

Implicit Euler Method

◼ Explicit method: only requires information at tj to
compute the state at tj+1

◼ Implicit method:

◼ Another relevant method: trapezoidal formula

16

Example

◼ Explicit formula

◼ Implicit formula

◼ Trapezoidal formula

17

Solving ODE

◼ Accuracy: ability to get
close to the true solution

◼ Stability: ability to keep the
error from growing as it
integrates over time.

◼ We solve the pendulum
equation using Euler
explicit, implicit and
trapezoidal formula.

18

Better schemes to solve ODEs

19

◼ Predictor-correct methods: improve the accuracy by
querying the F multiple times at different locations
(predictions) and using a weighted average of the
results (correction) to update the state.

◼ Midpoint method:

Runge Kutta Methods (RK methods)

20

◼ Better accuracy if we use higher-order of derivatives

◼ RK methods avoid computing higher-order derivatives:

Python ODE solvers

◼ scipy.integrate.solve_ivp or scipy.integrate.odeint

◼ fun: takes the function F(t, S(t)), t_span: integration interval

[t0, tf], s0: initial state, method: different integration

methods, t_eval takes in the times to store the computed

solution, must be sorted and lie in t_span.

◼ Also can set tolerances atol, rtol (default 1e-6, 1e-3)

◼ odeint: works similarly, check the documentation on its use
21

solve_ivp(fun, t_span, s0, method = 'RK45', t_eval=None)

Example

22

import matplotlib.pyplot as plt
import numpy as np

from scipy.integrate import solve_ivp
F = lambda t, s: np.cos(t)
t_eval = np.arange(0, np.pi, 0.1)

sol = solve_ivp(F, [0, np.pi], [0], t_eval=t_eval)
plt.figure(figsize = (12, 4))

plt.subplot(121)
plt.plot(sol.t, sol.y[0])
plt.xlabel('t’)

plt.ylabel('S(t)’)
plt.subplot(122)

plt.plot(sol.t, sol.y[0] - np.sin(sol.t)) …

solve_ivp vs. odeint

◼ odeint uses lsoda from Fortran package to solve ODEs

◼ solve_ivp is more general, containing multiple
methods, including lsoda, but also others like BDF.

◼ solve_ivp is reported slower than odeint.

◼ Recent Python release suggests using solve_ivp

23

One 2nd-order ODE

25

26

Schedule

◼ Exam on Oct. 30

o 2 Problems

o Useful materials

◼ HW 5 due on Nov. 5

◼ The week of Nov. 4

◼ Final exam: Friday, Dec. 13, 8-9:50am, ATRC 102

27

Template for using solve_ivp

◼ Write down your ODE

28

Python code for defining, solving, plotting ODE
29http://tpcg.io/_XY8RO7

30

http://tpcg.io/_4Z5GG9

More about ODE solvers

◼ Stiffness of an ODE: A stiff ODE is difficult to solve
numerically (takes longer, not stable, small steps).

◼ Particularly for systems with very different time/spatial
scales, e.g., a very stiff spring

◼ In solve_ivp, use “RK45” or “RK23” methods
for non-stiff problems, use “Radau” or “BDF”
methods for stiff problems.

◼ Try “RK45”. If it fails, it’s likely a stiff problem.

33

Boundary value problems

◼ An ODE with a set of constraints (boundary conditions)

◼ IVP: specify f(0) and f’(0) and find f(x) for x > 0 given the
ODE.

◼ BVP: specify f(0) and f(20) and find f(x) for x > 0 given the
ODE. Would be easy if we were given f'(0) as in IVP

◼ In general, nth order ODE requires n constraints.
34

Generic formulation

◼ x in a region [a,b], we need n boundary conditions at
value a and b.

◼ For 2nd order case, we have different cases

◼ f(a) and f(b) are given

◼ f’(a) and f’(b) are given

◼ f(a) and f’(b) are given or f(b) and f’(a) are given

35

Two-point BVP

Example

◼ Design of a cooling pin fin

◼ Consider both convection
and radiation

◼ Steady state temperature
distribution T(x)

◼ T(0)=T0, T(L) = TL

36

The shooting methods

◼ Transform the BVP to an IVP and solve it.

◼ Iterative method: trial and error, enhanced with root
finding. Say we are given f(a)=fa and f(b)=fb.

◼ Guess f’(a)=d. Together with f(a) = fa, solve the IVP.

◼ Obtain f(b)=g, which may not equal to fb.

◼ Adjust the initial guess and repeat (Goal: fb =g)

◼ Last step: root finding?

37

Example

◼ Launch a rocket so that it reaches 50 m at 5 seconds.
What should be the velocity at launching (no drag)?

◼ System: d2y(t)/dt2=-g, y(0)=0 and y(5) = 50. Need to
find y’(0)?

◼ Analytically we can solve it y’(0)=34.5.

◼ Numerically, using the shooting method with root
finding (e.g., secant method).

38

Python

39

def objective(v0):
 sol = solve_ivp(F, [0, 5], [y0, v0], t_eval = t_eval)

 y = sol.y[0]
 return y[-1] - 50

v0, = secant(objective, 10, 11)
print(v0)

Python BVP solver

◼ scipy.integrate.solve_bvp

◼ fun: similar to ivp, fun(x,y) or fun(x,y,p)

◼ bc: boundary conditions

◼ x: initial mesh

◼ y: initial guess at the mesh nodes

43

solve_bvp(fun, bc, x, y, p=None, S=None, fun_jac=None, bc_jac=None, tol=0.001,m
ax_nodes=1000, verbose=0, bc_tol=None)

Example

y’’ + 9y = cos(t),
y’(0) = 5,
y(pi) = - 5/3

44

from scipy.integrate import solve_bvp

import numpy as np

element 1: the ODE function

def ode(t,y):

''' define the ode system '''

return np.array([y[1], np.cos(t) - 9*y[0]])

element 2: the boundary condition function

def bc(ya,yb):

''' define the boundary conditions '''

ya are the initial values

yb are the final values

each entry of the return array will be set to zero

return np.array([ya[1] - 5, yb[0] + 5/3])

element 3: the time domain.

t_steps = 100

t = np.linspace(0,np.pi,t_steps)

element 4: the initial guess.

y0 = np.ones((2,t_steps))

Solve the system.

sol = solve_bvp(ode, bc, t, y0)

import matplotlib.pyplot as plt

here we plot sol.x instead of sol.t

plt.plot(sol.x, sol.y[0])

plt.xlabel('t')

plt.ylabel('y(t)')

plt.show()

http://tpcg.io/_DNZFYR

◼ fun remains the same as

ivp problem

◼ Must provide bc: 2 arrays
representing initial and
final values. bc evaluate
to zero.

◼ Pass a linspace of [t0, tf]

◼ Pass an initial guess for
all values

45

Notes

◼ sol.sol is a callable function. Plug in any value or
numpy array, e.g., sol.sol(np.linspace), sol.sol(float),

sol.sol(list).

◼ Pay attention to the initial values. Small changes can
lead to large difference in the final approximations.

◼ BVP with free parameters can also be addressed.
46

	Slide 1: Computer Methods (MAE 3403)
	Slide 2: Motivation
	Slide 3: Differential equations
	Slide 4: Examples
	Slide 5: Two main problems
	Slide 6: Initial value problems
	Slide 7: Rewrite the ODE to “first-order”
	Slide 8: Examples
	Slide 9: More examples: two coupled 1st-order ODE
	Slide 10: One 2nd-order ODE
	Slide 11: Two 2nd-order ODE
	Slide 12: Solving ODE: The Euler Method
	Slide 13: What’s happening?
	Slide 14: Example
	Slide 15: http://tpcg.io/_A5NKPC
	Slide 16: Implicit Euler Method
	Slide 17: Example
	Slide 18: Solving ODE
	Slide 19: Better schemes to solve ODEs
	Slide 20: Runge Kutta Methods (RK methods)
	Slide 21: Python ODE solvers
	Slide 22: Example
	Slide 23: solve_ivp vs. odeint
	Slide 25: One 2nd-order ODE
	Slide 26
	Slide 27: Schedule
	Slide 28: Template for using solve_ivp
	Slide 29: Python code for defining, solving, plotting ODE
	Slide 30
	Slide 33: More about ODE solvers
	Slide 34: Boundary value problems
	Slide 35: Generic formulation
	Slide 36: Example
	Slide 37: The shooting methods
	Slide 38: Example
	Slide 39: Python
	Slide 43: Python BVP solver
	Slide 44: Example
	Slide 45
	Slide 46: Notes

