
Computer Methods (MAE 3403)

Ordinary Differential Equations 
(ODE)

1
Numerical methods in engineering with Python 3

Python Programming and Numerical Methods



Motivation

◼ Differential equations describe relationships between a 
function and its derivatives

◼ Widely used in modelling systems in every 
engineering and science field

◼ Car’s motion, pendulum, spacecraft, air vehicle, HVAC

◼ Finding exact solutions to a differential equation is 
hard. 

◼ Numerical solutions are critical 
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Differential equations

◼ Describe the relationships of f(x) and its derivatives. 

◼ Ordinary differential equations (ODE): single 
independent variable (x)

◼ An nth order ODE:
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Examples

◼ The motion of the angle in the 
presence of gravity can be described as

◼ Second-order acceleration model
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Two main problems

◼ Initial value problems (IVP)

◼ Boundary value problems (BVP)

5



Initial value problems

◼ For an nth order ODE, the initial value is the known 
value for the 0th to (n-1)th derivatives at x = 0, i.e., 
f(0), f(1)(0), …, f(n-1)(0).

◼ IVP: finding a solution to the ODE given an initial 
value.  

◼ Notation:
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Rewrite the ODE to “first-order”
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◼ Numerical methods designed for first-order DEs. 

• First-order ODE 
for S(t)!

• nth order ODE 
=> n first-order 
coupled ODEs



Examples
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Simple model to describe population of
rabbits r(t) and wolves w(t)



More examples: two coupled 1st-order 
ODE
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One 2nd-order ODE
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Two 2nd-order 
ODE
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Solving ODE: The Euler Method

◼ Suppose we have an ODE system explicitly given

◼ Also given is the initial condition S(t0)

◼ Define a numerical grid [t0,tf] with spacing h. Let the 
ith grid point ti = ih and tf = Nh. 

◼ Explicit Euler Method: starting with j=0 and S(t0)
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1. Store 𝑆 𝑆 𝑡 in an array, 𝑆.
2. Compute 𝑆 𝑡 𝑆 ℎ𝐹 𝑡 𝑆

3. Store 𝑆 𝑆 𝑡 in 𝑆.
4. Compute 𝑆 𝑡 𝑆 ℎ𝐹 𝑡 𝑆 .
5. Store 𝑆 𝑆 𝑡 in 𝑆.
6. ⋯⋯

7. Compute 𝑆 𝑡𝑓 𝑆 − ℎ𝐹 𝑡 − 𝑆 − .
8. Store 𝑆 𝑆 𝑡𝑓 in 𝑆.
9. 𝑆 is an approximation of the solution to the IVP.

What’s happening?
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Example

df(t)/dt = e-t with f(0)=-1. Explicit solution: f(t) = -e-t 

Can you use the explicit Euler method to compute the 
solution of f(t) from t=0 to t = 1 with h = 0.1? Compare 
the solution to the explicit solution in a plot. How about h 
= 0.01? 

What conclusions can you draw from this example?
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http://tpcg.io/_A5NKPC
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http://tpcg.io/_A5NKPC
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Implicit Euler Method

◼ Explicit method: only requires information at tj to 
compute the state at tj+1

◼ Implicit method:

◼ Another relevant method: trapezoidal formula 
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Example

◼ Explicit formula

◼ Implicit formula

◼ Trapezoidal formula
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Solving ODE

◼ Accuracy: ability to get 
close to the true solution

◼ Stability: ability to keep the 
error from growing as it 
integrates over time. 

◼ We solve the pendulum 
equation using Euler 
explicit, implicit and 
trapezoidal formula. 
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Better schemes to solve ODEs
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◼ Predictor-correct methods: improve the accuracy by 
querying the F multiple times at different locations 
(predictions) and using a weighted average of the 
results (correction) to update the state.

◼ Midpoint method: 



Runge Kutta Methods (RK methods)
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◼ Better accuracy if we use higher-order of derivatives

◼ RK methods avoid computing higher-order derivatives: 



Python ODE solvers

◼ scipy.integrate.solve_ivp or scipy.integrate.odeint

◼ fun: takes the function F(t, S(t)), t_span: integration interval 

[t0, tf], s0: initial state, method: different integration 

methods, t_eval takes in the times to store the computed 

solution, must be sorted and lie in t_span. 

◼ Also can set tolerances atol, rtol (default 1e-6, 1e-3) 

◼ odeint: works similarly, check the documentation on its use
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solve_ivp(fun, t_span, s0, method = 'RK45', t_eval=None)



Example
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import matplotlib.pyplot as plt 
import numpy as np 

from scipy.integrate import solve_ivp 
F = lambda t, s: np.cos(t) 
t_eval = np.arange(0, np.pi, 0.1) 

sol = solve_ivp(F, [0, np.pi], [0], t_eval=t_eval) 
plt.figure(figsize = (12, 4)) 

plt.subplot(121) 
plt.plot(sol.t, sol.y[0]) 
plt.xlabel('t’) 

plt.ylabel('S(t)’) 
plt.subplot(122) 

plt.plot(sol.t, sol.y[0] - np.sin(sol.t)) …



solve_ivp vs. odeint

◼ odeint uses lsoda from Fortran package to solve ODEs

◼ solve_ivp is more general, containing multiple 
methods, including lsoda, but also others like BDF.

◼ solve_ivp is reported slower than odeint.

◼ Recent Python release suggests using solve_ivp
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One 2nd-order ODE
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Schedule

◼ Exam on Oct. 30

o 2 Problems

o Useful materials

◼ HW 5 due on Nov. 5

◼ The week of Nov. 4

◼ Final exam: Friday, Dec. 13, 8-9:50am, ATRC 102
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Template for using solve_ivp

◼ Write down your ODE
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Python code for defining, solving, plotting ODE
29http://tpcg.io/_XY8RO7
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http://tpcg.io/_4Z5GG9



More about ODE solvers

◼ Stiffness of an ODE: A stiff ODE is difficult to solve 
numerically (takes longer, not stable, small steps).

◼ Particularly for systems with very different time/spatial 
scales, e.g., a very stiff spring

◼ In solve_ivp, use “RK45” or “RK23” methods
for non-stiff problems, use “Radau” or “BDF” 
methods for stiff problems. 

◼ Try “RK45”. If it fails, it’s likely a stiff problem.
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Boundary value problems

◼ An ODE with a set of constraints (boundary conditions)

◼ IVP: specify f(0) and f’(0) and find f(x) for x > 0 given the 
ODE. 

◼ BVP: specify f(0) and f(20) and find f(x) for x > 0 given the 
ODE. Would be easy if we were given f'(0) as in IVP

◼ In general, nth order ODE requires n constraints. 
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Generic formulation

◼ x in a region [a,b], we need n boundary conditions at 
value a and b. 

◼ For 2nd order case, we have different cases

◼ f(a) and f(b) are given

◼ f’(a) and f’(b) are given

◼ f(a) and f’(b) are given or f(b) and f’(a) are given
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Two-point BVP



Example

◼ Design of a cooling pin fin

◼ Consider both convection 
and radiation

◼ Steady state temperature 
distribution T(x)

◼ T(0)=T0, T(L) = TL
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The shooting methods

◼ Transform the BVP to an IVP and solve it. 

◼ Iterative method: trial and error, enhanced with root 
finding. Say we are given f(a)=fa and f(b)=fb. 

◼ Guess f’(a)=d. Together with f(a) = fa, solve the IVP.

◼ Obtain f(b)=g, which may not equal to fb. 

◼ Adjust the initial guess and repeat (Goal: fb =g)

◼ Last step: root finding? 
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Example

◼ Launch a rocket so that it reaches 50 m at 5 seconds. 
What should be the velocity at launching (no drag)?

◼ System: d2y(t)/dt2=-g, y(0)=0 and y(5) = 50. Need to 
find y’(0)?

◼ Analytically we can solve it y’(0)=34.5. 

◼ Numerically, using the shooting method with root 
finding (e.g., secant method). 
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Python
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def objective(v0): 
       sol = solve_ivp(F, [0, 5], [y0, v0], t_eval = t_eval) 

       y = sol.y[0] 
       return y[-1] - 50 

v0, = secant(objective, 10, 11) 
print(v0)



Python BVP solver

◼ scipy.integrate.solve_bvp

◼ fun: similar to ivp, fun(x,y) or fun(x,y,p)

◼ bc: boundary conditions

◼ x: initial mesh

◼ y: initial guess at the mesh nodes
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solve_bvp(fun, bc, x, y, p=None, S=None, fun_jac=None, bc_jac=None, tol=0.001,m
ax_nodes=1000, verbose=0, bc_tol=None)



Example

y’’ + 9y = cos(t), 
y’(0) = 5, 
y(pi) = - 5/3
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from scipy.integrate import solve_bvp

import numpy as np

# element 1: the ODE function

def ode(t,y):

''' define the ode system '''

return np.array([y[1], np.cos(t) - 9*y[0]])

# element 2: the boundary condition function

def bc(ya,yb):

''' define the boundary conditions '''

# ya are the initial values

# yb are the final values

# each entry of the return array will be set to zero

return np.array([ya[1] - 5, yb[0] + 5/3])

# element 3: the time domain.

t_steps = 100

t = np.linspace(0,np.pi,t_steps)

# element 4: the initial guess.

y0 = np.ones((2,t_steps))

# Solve the system.

sol = solve_bvp(ode, bc, t, y0)

import matplotlib.pyplot as plt

# here we plot sol.x instead of sol.t

plt.plot(sol.x, sol.y[0])

plt.xlabel('t')

plt.ylabel('y(t)')

plt.show()

http://tpcg.io/_DNZFYR



◼ fun remains the same as 

ivp problem

◼ Must provide bc: 2 arrays 
representing initial and 
final values. bc evaluate 
to zero. 

◼ Pass a linspace of [t0, tf]

◼ Pass an initial guess for 
all values

45



Notes

◼ sol.sol is a callable function. Plug in any value or 
numpy array, e.g., sol.sol(np.linspace), sol.sol(float), 

sol.sol(list). 

◼ Pay attention to the initial values. Small changes can 
lead to large difference in the final approximations. 

◼ BVP with free parameters can also be addressed. 
46
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