
Computer Methods (MAE 3403)

Object Oriented Programming
(OOP)

1
Numerical methods in engineering with Python 3

Python Programming and Numerical Methods

Motivation

◼ Other packages or modules are written in OOP using class.

◼ np.array(), A.shape, scipy.integrate.solve_ivp, …

◼ OOP commonly used to write large programs/packages

◼ simplifies the code with better readability

◼ better describes the end goal

◼ reusable

◼ reduces potential bugs

2

Introduction

◼ Procedure-oriented programming (POP): list of instructions
to achieve a certain functionality

◼ Good for small and simple programs

◼ OOP: a completely different programming paradigm

◼ OOP isn’t a must, but is a better option for large programs

3

OOP

◼ class: a template to define a logical grouping of data
and functions

◼ a people class, containing data (properties, attributes) such

as name, age, and some methods (functions) to print ages

and genders

◼ objects: combines attributes and methods, an
instance of the class with actual values.

◼ Iron man with age 35, Batman with age 33

4

Example: People class

5

class People():
 def __init__(self, name, age):

 self.name = name
 self.age = age
 def greet(self):

 print("Greetings, " + self.name)

initialize an object/instance “person1”
person1 = People(name = 'Iron Man', age = 35)

person1.greet()
print(person1.name)
print(person1.age)

another independent instance
person2 = People(name = 'Batman', age = 33)

person2.greet()
print(person2.name)
print(person2.age)

People class
• Data: name and age

• Method: greet

Class

◼ A blueprint to define a logical grouping of data and methods

6

class ClassName(superclass):
 def __init__(self, arguments):

 # define or assign object attributes

 def other_methods(self, arguments):

 # body of the method

• Class name: CapWords
• Inherit from a `superclass’

• __init__: a special method that’s run
as soon as an object of a class is
created, assigns initial values of

attributes
• other_methods: define other functions

• self: must have as the first
argument when you define a

method. Refers to object itself, so
that you can access attributes and
other objects of the same object.

Import a class

◼ from Filename import ClassName

o Directly use ClassName to create an instance/object

◼ import Filename

o Use Filename.ClassName to create an instance/object for

that class

7

Example

◼ Define a class named Student,
with the attributes sid (student
id), name, gender, type in
the init method and a method
called say_name to print out
the student’s name. All the
attributes will be passed in
except type, which will have a
value as ‘learning’.

8

class Student():
 def __init__(self, sid, name, gender):

 self.sid = sid
 self.name = name
 self.gender = gender

 self.type = 'learning’
 def say_name(self):

 print("My name is " + self.name)

You try

◼ Add a method report that

print the student name as
well as the student id. The
method also has another
argument score that will be
passed in with a number
between 0 and 100. Print
the score too.

9

You try

◼ Add a method report that

print the student name as
well as the student id. The
method also has another
argument score that will be
passed in with a number
between 0 and 100. Print
the score too.

10

def report(self, score):
 self.say_name()

 print("My id is: " + self.sid)
 print("My score is: " + str(score))

Object

◼ An instance of a defined class with actual values.

11

student1 = Student("001", "Susan", "F")
student2 = Student("002", "Mike", "M")

student1.say_name()
student2.say_name()
print(student1.type)

print(student1.gender)

student1.report(95)
student2.report(90)

• Access attributes: student1.type

• Try student1.+TAB

• Access methods: student1.say_name()

Class attributes

◼ Shared with all the instances created from one class.

12

class Student():
 n_instances = 0

 def __init__(self, sid, name, gender):
 self.sid = sid
 self.name = name

 self.gender = gender
 self.type = 'learning’

 Student.n_instances += 1

def num_instances(self):
 print(f'We have {Student.n_instances}-instance in total')

student1 = Student("001", "Susan", "F")
student1.num_instances()

student2 = Student("002", "Mike", "M")
student1.num_instances()
student2.num_instances()

More unique concepts

◼ Inheritance

◼ Build a relationship between classes

◼ Encapsulation

◼ Hide some private details of a class from other objects

◼ Polymorphism

◼ Use a common operation in different ways

13

Inheritance

◼ Define a class that inherits all the methods/attributes
from another class

◼ child class vs. parent class(superclass)

class ClassName(superclass)

◼ Parent class is more general while child class is a
specific type of the parent class.

14

Example

15

class Sensor():
 def __init__(self, name, location, record_date):

 self.name = name
 self.location = location
 self.record_date = record_date

 self.data = {}
 def add_data(self, t, data):

 self.data['time'] = t
 self.data['data'] = data
 print(f'We have {len(data)} points saved’)

 def clear_data(self):
 self.data = {}

 print('Data cleared!')

16

import numpy as np
sensor1 = Sensor('sensor1', ‘OSU’, ‘2019-01-01’)

data = np.random.randint(-10, 10, 10)
sensor1.add_data(np.arange(10), data)
print(sensor1.data)

A specific sensor: accelerometer

◼ Inheritance: shares the
same attributes and
methods as Sensor

◼ Have a different
method show_type

◼ Extended the superclass

17

class Accelerometer(Sensor):
 def show_type(self):

 print('I am an accelerometer!’)
acc = Accelerometer('acc1', ‘OKC', '2019-02-01')
acc.show_type()

data = np.random.randint(-10, 10, 10)
acc.add_data(np.arange(10), data)

print(acc.data)

Overriding a method

◼ Inherits from Accelerometer

◼ Override the show_type
method in Accelerometer

18

class OSUAcc(Accelerometer):
 def show_type(self):

 print(f'I am {self.name}, created at OSU!')
acc_osu = OSUAcc(‘OSUAcc’, ’OSU', '2019-03-01')
acc_osu.show_type()

Update attributes

◼ Inherit from the Sensor class, but add a new attribute
brand

19

class NewSensor(Sensor):
 def __init__(self, name, location, record_date, brand):

 self.name = name
 self.location = location
 self.record_date = record_date

 self.brand = brand
 self.data = {}

new_sensor = NewSensor('OK', ‘SWO', '2019-03-01', 'XYZ')
print(new_sensor.brand)

Without using much of the
parent class!!

A simpler solution with super

◼ super avoid referring to the parent class explicitly

20

class NewSensor(Sensor):
 def __init__(self, name, location, record_date, brand):

 super().__init__(name, location, record_date)
 self.brand = brand

 self.data = {}

new_sensor = NewSensor('OK’, ‘SWO', '2019-03-01', 'XYZ')
new_sensor.brand

Use the superclass initialization method first for some attributes.
Then add the new attribute.

Encapsulation

◼ Restricting access to methods and attributes in class.

◼ Hide complex details

◼ Prevent data being modified by accident

◼ Use underscore as prefix, i.e., single _ or double __

◼ single _: convention, should not be accessed directly

◼ double __: cannot be accessed or modified directly

21

Example

22

class Sensor():
 def __init__(self, name, location):

 self.name = name
 self._location = location
 self.__version = '1.0’

 # a getter function
 def get_version(self):

 print(f'The sensor version is {self.__version}’)
 # a setter function
 def set_version(self, version):

 self.__version = version

sensor1 = Sensor('Acc', ‘OSU')
print(sensor1.name)

print(sensor1._location)
print(sensor1.__version)

Use the "setter" and "getter" methods

◼ The single and
double underscores
also apply to private
methods in the
same fashion.

23

sensor1.get_version()

sensor1.set_version('2.0')
sensor1.get_version()

Polymorphism

◼ Use a single interface with different underlying forms
such as data types or classes

◼ We can have commonly named methods across classes or

child classes.

◼ Parent class can have "abstract" methods: pass

◼ We override the method show_type in the OSUAcc. For
parent class Accelerometer and child class OSUAcc,
they both have a method named show_type, but they
have different implementations.

24

Examples

◼ Robot

◼ GPA Calculation

◼ Aerospace

25

Example 1

◼ Design a robot control system using Python Object-
Oriented Programming.

◼ Create a base class called "Robot" with the following
attributes and methods:
o - Attributes: `name`, `battery_level`, `position`

o - Methods:
▪ __init__(self, name, battery_level, position)

▪ move(self, distance) # reduce battery level
▪ rotate(self, angle) # reduce battery level
▪ perform_task(self) # empty method

▪ display_status(self) # display name, battery_level, position 26

◼ Create three subclasses that inherit from `Robot`:
o `CleaningRobot`, `SurveillanceRobot`, `AssemblyRobot`

◼ Each subclass should:
o Implement a unique method related to its specific task

▪ empty_dustbin # battery_level –1
▪ night_vision_mode # battery_level -1

▪ calibrate_arm # battery_level -1

o Override the `perform_task()` method with a type-specific

implementation

27

◼ Create a `RobotController` class that:
Has a list to store robots

Has methods to add robots, display all robot statuses, and

execute tasks for all robots

◼ Create instances of different robot types and perform
operations on them.

28

Example 2

◼ Load a txt file with students' grades for HW, exams

◼ Compute the final grade of each student

◼ Write the final grades to a file

29

Example 3

◼ Computation of aerodynamic lift and drag coefficients

30

	Slide 1: Computer Methods (MAE 3403)
	Slide 2: Motivation
	Slide 3: Introduction
	Slide 4: OOP
	Slide 5: Example: People class
	Slide 6: Class
	Slide 7: Import a class
	Slide 8: Example
	Slide 9: You try
	Slide 10: You try
	Slide 11: Object
	Slide 12: Class attributes
	Slide 13: More unique concepts
	Slide 14: Inheritance
	Slide 15: Example
	Slide 16
	Slide 17: A specific sensor: accelerometer
	Slide 18: Overriding a method
	Slide 19: Update attributes
	Slide 20: A simpler solution with super
	Slide 21: Encapsulation
	Slide 22: Example
	Slide 23: Use the "setter" and "getter" methods
	Slide 24: Polymorphism
	Slide 25: Examples
	Slide 26: Example 1
	Slide 27
	Slide 28
	Slide 29: Example 2
	Slide 30: Example 3

