!'_ Computer Methods (MAE 3403)

Optimization

Numerical methods in engineering with Python 3
Python Programming and Numerical Methods

:_L Optimization: VERY IMPORTANT

= End the semester in a high note

= Optimization is a critical component in many, many
engineering problems

= It is also an active research area, particularly with the
advancement of ML/AI technologies

$ Optimization

s FInd the Location of the Maximum or Minimum Value
of a function

Peaks

Nonlinear programming

e —

i Engineering applications

= Choose the values of design parameters or operating
parameters to achieve maximum (GOOD) or minimum
(BAD) subject to constraints

= GOOD and BAD for:

= Designs of airplanes, race cars
= Performance of thermal systems
= Collisions between vehicles

:_L Minimize or Maximize

= T0 unify the syntax, we consider only minimization
problems.

= Convert maximization problems to minimization:

= maximize f(x) subject to constraints on X = minimize —f(x)
subject to the same set of constraints on x

1L One variable optimization

Local Maximum !

\
— /N

/Global Maximum

The second derivative demonstrates whether a point with zero first
derivative is a maximum, a minimum, or an inflexion point.

g

Local Minimum

Global Minimum/

» First order derivative

For a maximum, the
second derivative is
negative. The slope
of the curve (first
derivative) is at first
positive, then goes
through zero to
become negative.

s Second order derivative: Hessian

2
d
—g>0
at

For a minimum, the
second derivative is
positive. The slope
of the curve = first
derivative is at first
negative, then goes
through zero to
become positive.

For an inflexion point,

the second derivative

IS zero at the same

time the first derivative

IS zero. It represents a
point where the curvature
is changing its sense.
Inflexion points are
relatively rare in nature.

:_L Typical form of an optimization problem

min f (x)

subjectto g;(x) = 0,i =1,2, ...
hJ(X) = 0,] =1,2,..
LB<x<UB

f(x): objective function to be minimized, a scalar function
X: decision variable, an array of design parameters

g;(x) = 0: 1 inequality constraint.

h;(x) = 0: 1 equality constraint.

LB, UB: lower and upper bounds of each element of x

What if inequality constraints are in the form of g;(x) < 0?
Let g;(x) = —g;(x). Then g;(x) = 0 is equivalent to g;(x) <0 ;

scipy.optimize.minimize

fun: f(x), objective function to be
minimized

= X0: some initial guess of an
optimal decision variable x

= args: extra parameters passed to
fun

= method: choice of solvers

scipy.optimize.

minimize

minimize(fun, x8, args=(), method=None, jac=None, hess=None, hessp=None,

bounds=None, constraints=(), tol=None, callback=None, options=None)

Minimization of scalar function of one or more variables.

Parameters:
fun : callable

The objective function to be minimized.

fun(x, *args) —> float

[source]

where x is a 1-D array with shape (n,) and args is a tuple of the fixed parameters

needed to completely specify the function.

x0 : ndarray, shape (n,)
Initial guess. Array of real elements of size (n,), where n is the number of
independent variables.

args : tuple, optional

Extra arguments passed to the objective function and its derivatives (fun, jac and

hess functions).

method : stror callable, optional

Type of solver. Should be one of

* 'Nelder-Mead' (see here)

* 'Powell' (see here)

* 'CG’ (see here)

« 'BFGS’ (see here)

» ‘Newton-CG’ (see here)
* 'L-BFGS-B’ (see here)
* 'TNC' (see here)

* '‘COBYLA’ (see here)

« 'COBYQA' (see here)

« 'SLSQP' (see here)
‘trust-constr’(see here
« 'dogleg’ (see here)
"trust-ncg’ (see here)
‘trust-exact’ (see here)
"trust-krylov' (see here

= custom - a callable object, see below for description.

continued

= bounds: (min, max) of each

element of X
= X must be greater than 0
= X must be within a ran

= constraints:
= inequality constraints
= equality constraints

bounds : sequence or Bounds , optional

Bounds on variables for Melder-Mead, L-BFGS-B, THC, SLSQP, Powell, trust-constr,
COBYLA, and COBYQA methods. There are two ways to specify the bounds:

1. Instance of Bounds class.

2. Sequence of (min, max) pairs for each element in x. None is used to
specify no bound.

constraints : {Constraint, dict} or List of {Constraint, dict}, optional
Constraints definition. Only for COBYLA, COBYQA, SLSQP and trust-constr.
Constraints for 'trust-constr’ and ‘cobyqga’ are defined as a single object or a list of
objects specifying constraints to the optimization problem. Available constraints are:

* LinearConstraint

* NonlinearConstraint

Constraints for COBYLA, SLSQP are defined as a list of dictionaries. Each dictionary
with fields:
type : str
Constraint type: ‘eq’ for equality, 'ineq’ for ineguality.
fun : callable

The function defining the constraint.

jac : callable, optional
The Jacobian of fun (only for SLSQP).
args : sequence, optional

Extra arguments to be passed to the function and Jacobian.

Equality constraint means that the constraint function result is to be zero whereas
inequality means that it is to be non-negative. Note that COBYLA only supports
inequality constraints.

tol : float, optional

Tolerance for termination. When tol is specified, the selected minimization algorithm
sets some relevant solver-specific tolerance(s) equal to tol. For detailed control, use
solver-specific options.

options : dict, optional
A dictionary of solver options. All methods except TNC accept the following generic
options:

I maxiter : int

:_L SCipy.optimize.minimize returns

res: OptimizeResult

The optimization result represented as
an OptimizeResult object.

Important attributes are:

X the solution array,

success a Boolean flag indicating if the optimizer exited
successfully,

message which describes the cause of the termination.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html

10

Rosenbrock function of N variables

Nelder-Mead Simplex algorithm (method="Nelder-Mead")
In the example below, the minimize routine is used with the Nelder-Mead simplex algorithm (selected
through the method parameter):

o |
»>> import numpy as np

F(x) = Z 100(zi1 — 22)? + (1 — ;)
»>» from scipy.optimize import minimize

=1
»»>> def rosen(x):

2 242
f(z,y) = (a—2)" + by — z°)
"""The Rosenbrock function™""
return sum(1@@.@*(x[1:]-x[:-1]**2.0)**2.0 + (1-x[:-1])**2.8@)

»>» Xx@ =
>>> res =

25001
np.array([1.3, @.7, ©.8, 1.9, 1.2]) |
minimize(rosen, x@, method="nelder-mead

options={'xatol"': le-8, "disp’: True})
Dpt1mtzat1ﬂn terminated successfully.

Current function value:

2000

15001

l
1000
: 0.68880686 ‘
. 500 1
Iterations: 339
Function evaluations: 571 E:
»»> print(res.x)

[1. 1. 1. 1. 1.]

i With constraints

Contour plot L min Z(X,y):yz_y+x2_3x

subject to (x-0.5)% + (y-0.5)°<=0.5%

2.00

1.75

... = Convert the constraint to
os0s (0,52 - (X-0.5)% - (y-0.5)2>=0

1.364
0.455

0.000

1.50

040 type': 'ineq’
o E;gg 'fun' Iambda 0.25 0

0.50

0.5 2 11 -0.5 2
x DO NOT set a solver

0.25

0.00
0.00 0.25 050 0.75 1.00 1.25 150 1.75 2.00

12

i With bounds

2.00 Contour plot = Write it in the “"bounds” argument
150 e m MIN z(X,Y)=y*—y+x°—3x

125] ig;zgz subject to 0<=x<=0.5, O<=y<=1

" o = bounds = [(xlb, xub), (ylb, yub)]

0.50 1

0.25 ;

0.00
0.00 0.25 050 0.75 1.00 1.25 150 1.75 2.00

13

:_L Another example

= min (x-1)2 + (y-2.5)2
= Subject to
s X — 2y+2 >=0,
s -X -2y + 6>=0,
s -X+2y + 2>=0
»X>0,y>0

14

:_L Final example EETOm s T s 10y

= | he cantilever beam of the circular cross section is to

have the smallest volume subject to constraints:

= 0, < 180 Mpa, o, = 2=

r;

« 0, < 180 Mpa, o, = —=

Trs

.5§25mm,5— (+4)

3TE 1"1

= E =200 Gpa. P = 10 kN. Determine r; and r».

15

i Formulation

= Minimize the volume V = nrfL + nrfLl = Lu(r{ + 1)
= How about just min (¢ +)
s Constraints: 1 Mpa = 1 Newton/mm?, ry, r, in mm

8PL 8 ¥10,000 *1,000
» — < 180 MPa = 3 < 180
Try Try
4PL 4%10,000 *1,000
» — < 180 Mpa = 2 < 180
TL'TZ 7'[7‘2
PL3 (7 1 10,000 *1,0003 [7 1
o .+) <25mm = + =] <25
3ME \14 T, 3*x200,000 \7y T,

= Bounds: ry, r; > 0 16

Constraints and bounds can also be
handled via penalty functions

if x <-1 ifx>6

4_ —

f(x) = 3o ‘ 01 sin(x)

S (x)
Jp (%)

10

Constraints and Penalty Functions - for Unconstrained MINIMIZERs

S (x)

fp (x)
—

ifx <-1
p =10-(-1 —x)

p =4(x-06)

—:$

10

£ () = 3

X

Usually slopes around

. sin (x)

10

6

	Slide 1: Computer Methods (MAE 3403)
	Slide 2: Optimization: VERY IMPORTANT
	Slide 3: Optimization
	Slide 4: Engineering applications
	Slide 5: Minimize or Maximize
	Slide 6: One variable optimization
	Slide 7: Typical form of an optimization problem
	Slide 8: scipy.optimize.minimize
	Slide 9: continued
	Slide 10: scipy.optimize.minimize returns
	Slide 11: Rosenbrock function of N variables
	Slide 12: With constraints
	Slide 13: With bounds
	Slide 14: Another example
	Slide 15: Final example
	Slide 16: Formulation
	Slide 17: Constraints and bounds can also be handled via penalty functions
	Slide 18

