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Abstract— Probabilistic inference approaches to stochastic
optimal control have attracted significant interest from re-
searchers in the past decade. Existing inference-based opti-
mal control approaches are limited to linear controllers in
a finite-horizon model-based setting. Since nonlinear systems
typically admit nonlinear optimal controllers, linear controllers
may yield sub-optimal trajectories when applied to nonlin-
ear systems. In this paper, we propose a new Expectation-
Maximization (EM) based inference algorithm for stochas-
tic optimal control. The algorithm employs nonlinear basis
functions to infer nonlinear controllers. We formulate the
estimation problem of optimal control as a parameter inference
problem. We demonstrate the effectiveness of the algorithm on
a simulated nonlinear oscillator system for nonlinear control
and a linear thermal system for structured control.

I. INTRODUCTION

The stochastic optimal control (SOC) problem aims at
finding a control sequence in the presence of uncertainty
for a dynamical system over a finite or infinite horizon such
that the control minimizes an expected cost. The uncertainty
makes the SOC problem much more challenging than its
deterministic counterpart. This uncertainty is either in the
form of noisy observations or process noise that approxi-
mates model uncertainties in the system.

A solution to the SOC problem can be found by solving
the stochastic Hamilton-Jacobi-Bellman (HJB) [1] equation
which is a nonlinear PDE. However its numerical solution
requires discretization of the space and time that makes it
computationally intractable due to the curse of dimension-
ality [2]. A fast and locally approximate solution to the
SOC problem is the Linear Quadratic Gaussian (LQG) case
where the SOC problem is solved for the noise free optimal
trajectory and a local LQG model is constructed as pertur-
bation around this trajectory. As long as the model is not
perturbed too far away from the optimal noise-free trajectory,
the local linear quadratic regulator computes a reasonably
approximate solution to the original SOC problem. The local
LQG can be analytically solved in closed form using Ricatti
equations. An algorithm motivated by this approach is the
iterative linear quadratic gaussian (ilqg) [3] that performs
iterative linearization of non-linear system dynamics around
the current trajectory and uses the LQG paradigm to obtain
update equations to compute locally optimal trajectory.

An alternative promising direction to solve the SOC
problem in discrete time was developed in the last decade
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that reformulates the SOC problem as a graphical model
inference problem. References [4], [5], [6], [7], [8] are some
examples of inference-based control approaches that have
been successfully used in real world applications. The idea
of approximate inference for control is also connected to
the field of reinforcement learning (RL). ψ-Learning [9] and
Soft Q-learning [10] are some of the algorithms developed
in this direction. The RL as inference framework has also
been studied in the context of risk-sensitive control in [11],
[9]. Recently, [12] proposes an approach analogous to the
inference based control that relates the optimization-based
model predictive control (MPC) to Bayesian estimation for
deterministic nonlinear systems.

The aforementioned model based inference approaches to
SOC have been derived only in the LQG setting and the
non-LQG setting with linear controllers. However, nonlinear
systems typically admit nonlinear optimal controllers. Thus,
the use of linear optimal controllers can lead to a subop-
timal solution to the SOC problem in a non-LQG setting.
Recent research in neural network based control, Koopman
operators, and Carleman linearziation has motivated the use
of controllers parameterized with nonlinear basis functions.

In this paper, we propose a generic inference-based control
algorithm to address the SOC problem in discrete time.
Particularly, we infer nonlinear controllers in a model based
inference setting by parameterizing the controller with a
nonlinear basis function. This allows us to reformulate the
original nonlinear input estimation problem [7], [8] as a
parameter inference problem which can be solved using
Expectation-Maximization (EM) algorithm.

We perform numerical simulations on a nonlinear oscilla-
tor system to demonstrate the effectiveness of the nonlinear
controllers inferred by the proposed algorithm over linear
controllers. In addition, our algorithm can be easily adapted
to produce structured controls. An example of structured
control is distributed optimal control for multi-agent systems,
where the control of each agent can contain information only
from a subset of the agents. We employ a linear thermal
dynamics model to demonstrate the ability of the proposed
algorithm to infer structured controllers.

The remainder of the paper is organized as follows.
Section II presents the formulation of inference-based con-
trol approaches and reviews relevant previous work. Sec-
tion III discusses the parameterized input inference for
control (PIIC) algorithm for nonlinear control, which is
the main contribution of this paper. Section IV presents
two simulation examples to demonstrate the effectiveness
of the PIIC algorithm for nonlinear and structured control.



Conclusions and future work are provided in Section V.
Notation: Let y ∼ N (a,A) represent a random variable

y satisfying a Gaussian distribution in the normal form with
mean a ∈ Rd and covariance A ∈ Rd×d given by

N (a,A) =
1

(2π)
d
2 |A| 12

exp

(
−1

2
(y − a)TA−1(y − a)

)
,

where |A| represents the determinant of A.

II. INFERENCE-BASED CONTROL

A. Formulation of inference-based control

Consider a dynamical system given by

xt+1 = F (xt, ut) + ηt, (1)

where xt ∈ Rnx and ut ∈ Rnu denote the state and
control at time t, respectively, F : Rnx × Rnu → Rnx is a
nonlinear mapping of xt, ut, ηt ∼ N (0,Σηt

) represents
additive Gaussian noise that models the uncertainty in the
dynamics. We denote the state-control vector at time t by
τt = [xTt uTt ]

T ∈ Rnx+nu . Thus, (1) can be rewritten as

xt+1 = F (τt) + ηt, (2)

For a given finite-horizon T and a state-control sequence
[xT , τ0:T−1], we denote the trajectory cost C(xT , τ0:T−1), as
the summation of the costs per stage and the terminal cost.
The considered SOC problem is summarized as

min
u0:T−1

E[C(xT , τ0:T−1)]

such that xt+1 ∼ N (F (τt),Σηt). (3)

Probabilistic inference approaches formulate the stochastic
optimal control problem in (3) as an inference problem on
a probabilistic graphical model (PGM). A PGM is a prob-
abilistic model that encodes complex relationships between
random variables in the form of a graph. The PGM for the
SOC problem is constructed with the state-control sequence
as latent variables and the sequence of binary random vari-
ables Ot ∈ {0, 1}, t = 0, · · · , T , as observed variables.
The binary random variable Ot represents the notion of
optimality or task fulfilment at each time step. In other
words, Ot = 1 when optimal state and action are observed
at time t. The probabilistic inference approaches relate the
probabilities to cost by assuming that the optimality/task
fulfilment is observed throughout the trajectory, i.e., Ot = 1,
t = 0, · · · , T . This allows modeling of the negative log-
likelihood of observation at time t proportional to the stage
cost ct, i.e.

− log (p(Ot = 1|τt)) ∝ ct(τt) ⇐⇒
p(Ot = 1|τt) ∝ exp{−ct(τt)}. (4)

Hence, the likelihood of observing optimality at each time
step is high if and only if the cost incurred is low. Then the
optimal trajectory is computed as the mean of the conditional
or joint posterior distribution of the state-control trajectory
given the observations.

B. Previous work

Most of the previous work on probabilistic inference for
SOC problems was derived in a Linear Qaudratic Gaus-
sian (LQG) setting to infer a linear controller of the form
p(ut|xt) = N (ut|Ktxt + kt,Σt). For the LQG case, the
dynamics in (1) are linear and the stage cost ct and terminal
cost cT are quadratic given by

F (τt) =

[
At 0
0 Bt

] [
xt
ut

]
+ at, (5)

ct(τt) =
[
xt ut

] [Qt 0
0 Rt

] [
xt
ut

]
. (6)

where At ∈ Rnx×nx , Bt ∈ Rnu×nu , at ∈ Rnx represent the
system matrices and Qt ∈ Rnx×nx , Rt ∈ Rnu×nu represent
the cost matrices.

1) Approximate Inference Control (AICO): The AICO [4]
algorithm infers the optimal state trajectories in the LQG
case by marginalizing out the controls using the control cost
as a prior, i.e., ut ∼ N (ut|0, R−1

t ). This is a consequence
of decoupling the state and control cost in (4) and (6) by
exploiting the structure of the graph. Then the posterior
distribution is approximated using the Gaussian message
passing technique on the Maximum a posteriori (MAP) tra-
jectory. The marginalization of controls during inference may
yield trajectories that are agnostic to the control constraints
and hence infeasible, i.e., no controller can generate the
inferred state trajectory. Subsequent work in [5], [13], [14]
was proposed to address the drawbacks of AICO and improve
its performance.

2) Input inference for control (I2C): The I2C [8], [7]
algorithm formulates the SOC problem as an input estimation
problem. It infers an optimal linear controller using an EM
approach. The expectation step computes the optimal state-
control distribution given the inverse temperature parameter
α that acts as a scale invariance for the precision of the
observation distribution using Kalman smoother like updates.
The maximization step finds the inverse temperature that
maximizes the expected log likelihood given the state-control
distribution. At the end of each pass of the E-step and the
M-step the priors of the state and control are updated with
the smoothed distributions which are then used to compute
a linear controller in the next iteration. The cost is encoded
into the optimality variable Ot through the observations as

zt ∼ N (zt|h(τt),Σξt), (7)

where zt ∈ Rnz denotes the measurement at time t,
h: Rnx × Rnu → Rnz is a nonlinear mapping of xt, ut,
ξt ∼ N (0,Σξt) represents the additive Gaussian noise that
models the uncertainty in the measurement. When the cost
is quadratic, the likelihood in (4) can be rewritten as

p(Ot = 1|τt) ∝ exp{−α(τTt Γtτt)} (8)

= N (zt = z∗t |τt, (αΓt)
−1), (9)

where Γt =

[
Qt 0
0 Rt

]
and z∗t = 0. The likelihood that

serves as an objective for the inverse temperature optimiza-



tion is given by

p(τ0:T ,O0:T = 1,Γ0:T , α) =

p(x0)p(zT |xT , α)
T−1∏
t=0

p(xt+1|τt)p(zt|τt, α)p(ut|xt). (10)

As mentioned in the introduction, existing approaches
on model-based inference control prescribe a linear control
structure with a Gaussian noise for p(ut|xt) in (10). In
the following section we parameterize the controller with a
nonlinear basis function and present an algorithm that yields
nonlinear optimal controllers. Particularly, the parameters of
the controller are considered latent variables to be inferred
using an EM algorithm.

III. PARAMETERIZED-INPUT INFERENCE FOR CONTROL
(PIIC)

A. Nonlinear Control

We assume that the feedback controller ut at each time
step is parameterized by a basis function (possibly nonlinear)
of the state, Bt(xt) ∈ Rnb×1, and unknown parameters Θt ∈
Rnb×nu such that

ut = ΘT
t Bt(xt) + δt (11)

⇒ p(ut|xt) = N (ut|ΘT
t Bt(xt),Σδ) (12)

where ut ∈ Rnu×1, xt ∈ Rnx×1 represent the control and
state at time t respectively, and δt represents a zero-mean
random Gaussian noise with covariance Σδ that models the
uncertainty in control.

The objective of the PIIC algorithm is to infer the param-
eters Θ0:T−1 and α that maximize the log-likelihood, i.e.,

Θ∗
0:T−1, α

∗ = argmax
Θ0:T−1,α

log[p(O0:T = 1|Θ0:T−1, α)]. (13)

Here, α refers to the inverse temperature parameter defined
in Section II-B.2. The optimization problem in (13) is
analytically intractable. Thus, we resort to computing the
parameters using an EM algorithm.

To simplify the notation, we denote τ0:T−1 by τ , O0:T =
1 by O and Θ0:T−1 by Θ. Then the objective in (13) is
rewritten as

log[p(O|Θ, α)] = log

[ ∫
p(xT , τ,O|Θ, α)dτdxT

]
. (14)

Introducing q(xT , τ), a known tractable distribution of xT
and τ , we obtain

log[p(O|Θ, α)] = log

[
E

q(xT ,τ)

[
p(xT , τ,O|Θ, α)

q(xT , τ)

] ]
. (15)

Using Jensen’s inequality, we further get

log[p(O|Θ, α)] ≥ E
q(xT ,τ)

log

[
p(xT , τ,O|Θ, α)

q(xT , τ)

]
. (16)

It can be shown that the inequality in (16) becomes equality
for q(xT , τ) = p(xT , τ |O). The PIIC algorithm aims at
optimizing the right hand side of (16) based on the EM
procedure.

B. Update equations

The E-step computes the smoothed state-control distri-
bution given the parameters and the M-step computes the
parameters that maximize the expected log posterior over the
smoothed distribution. These steps are recursively computed
until convergence. In this section we derive the update
equations for the parameters Θ and α in the M-step. The
integrand in (14) is proportional to the joint posterior distri-
bution given by

p(xT , τ0:T−1,O0:T = 1,Θ0:T−1, α) = p(x0)p(OT = 1|xT )
T−1∏
t=0

p(xt+1|τt)p(Ot = 1|τt, α)p(ut|xt,Θt). (17)

Substituting (17) in the M-step yields

argmax
Θ,α

E
τ∼q(xT ,τ)

log[p(xT , τ,O|Θ, α)] ∝

argmax
Θ,α

E
τ∼q(xT ,τ)

log

[
p(x0)p(OT = 1|xT )

T−1∏
t=0

p(xt+1|τt)p(Ot = 1|τt, α)p(ut|xt,Θt)

]
. (18)

To find Θk+1
t , we take gradient of (18) with respect to Θt

and set it to zero, which yields

∇Θt E
τ∼q(τt)

log[N (ut|ΘT
t Bt(xt),Σδt)] = 0 ⇒ (19)

∇Θt E
τ∼q(τt)

(ut −ΘT
t Bt(xt))

TΣ−1
δt

(ut −ΘT
t Bt(xt)) = 0.

(20)

Solving (20) gives

Θk+1
t =

[
E

τ∼q(τt)
[Bt(xt)Bt(xt)

T ]

]−1 [
E

τ∼q(τt)
[Bt(xt)u

T
t ]

]
.

(21)

The covariance of the controller Σδt is updated using

Σδt = E
τ∼q(τ)

(ut −Θk+1TBt(xt))(ut −Θk+1TBt(xt))
T .

(22)

Similarly, to find the αk+1 we take gradient of (18) with
respect to α and set it to zero, which yields

αk+1 =
(T − 1)nz + nzT∑T

t=0 Tr(ΓtE[(z∗t − zt)(z∗t − zt)T ])
, (23)

where Tr(·) denotes the trace operator and the expectation
is taken over the smoothed state-control distribution. Note
that (23) is the same as in [7], [8].

C. The proposed PIIC algorithm

The formulation presented in the previous section applies
to general nonlinear systems in the form of (1) with a con-
troller in (12). In this section, we propose the unscented-PIIC
algorithm summarized in Algorithm 1. Line 2 in Algorithm 1
corresponds to the E-step that computes the smoothed state-
control distribution given the parameters Θ, α. Here we use
the unscented I2C algorithm for this purpose. The unscented



Algorithm 1: Unscented-PIIC algorithm

Input : start distribution µx0 ,Σx0 , goal zT , system
matrices F (.), h(.), cost matrices Q0:T ,
R0:T−1, noise covariances Σξ0:T , Ση0:T

,
Σδ0:T−1

Output: τ∗0:T−1,Θ∗, α∗.
1 repeat
2 Perform unscented I2C to obtain smoothed state

control distribution p(xT , τ |O,Θ, α)
3 Update Θ using (21)

4 Update Σδ using (22)

5 Update α using (23)
6 until convergence;

I2C algorithm is a variant of the Gaussian I2C algorithm [7]
that uses unscented transforms [15], [16] to propagate the
Gaussian distribution through nonlinear functions. Lines 3-
5 in Algorithm 1 correspond to the M-step that computes
the parameters and the covariance of the controller Σδ , ∀
t ∈ [0, T − 1], using (21)–(23). These steps are computed
iteratively until convergence. The expectations in the M-step
are computed using unscented transforms.

The choice of using Gaussian-I2C algorithm in the E-
step is arbitrary as any smoothing algorithm that returns the
optimal state-control distribution given the controller param-
eters can be used in the E-step. The inference algorithm in
the M-step finds the parameters given the control and the
basis function and hence it is independent of the choice of
the algorithm in the expectation step. We can show that the
PIIC algorithm recovers the I2C algorithm for linear systems
with a linear basis function Bt(xt) = [xt 1]. Since the
PIIC algorithm is an EM algorithm, convergence to a local
maximum is guaranteed [17].

IV. SIMULATION EXAMPLES

A. Nonlinear oscillator

Consider the nonlinear oscillator dynamics in [18]:

ẋ1 = x2

ẋ2 = −x1 −
1

2
x2 cos

2(x1) + sin(x1)u.
(24)

For the optimal control problem of minimizing the objective
function C =

∫∞
0

(x22 + u2)dt subject to the dynamics of the
form in (24), [19] shows that an analytical solution to the
HJB equation in continuous time is given by

u = −x2 sin(x1). (25)

We solve the optimal control problem of driving the
nonlinear oscillator to the origin using Algorithm 1 in a

discrete time setting with the following parameters:

µx0
=

[
3 3

]T
, Σx0

= 10−4I2, Σδ0:T−1
= 1e5,

Ft =
[
x1t+1

x2t+1

]T
, ht =

[
τt
]
, Ση0:T

= 0,

Q0:T =

[
10−8 0
0 1

]
, R0:T−1 = 1,

where In denotes an identity matrix of shape n×n. We use
the forward Euler method to discretize (24) with a step-size
0.01 seconds and simulate for T = 1500 steps. We employ
the PIIC algorithm to develop three controllers using a linear
basis BL

t (x) = [x1 x2]
T , a nonlinear basis BNL

t (x) =
[x1 x2 x2 sinx1 x2 cosx1]

T , and another nonlinear basis
BKL
t (x) = [x1 x2 x1x2 x

2
1 x

2
2]

T . The BNL
t is due to the

optimal solution in (25). The BKL
t is motivated by Carleman

linearziation.
We compare these three controllers with respect to the

continuous time optimal solution (25). Figure 1 shows the
closed-loop trajectory of the oscillator for the four con-
trollers. We observe that although the states are driven to
the goal over time in all the cases, the optimality of the
trajectory varies with the choice of the basis function. The
nonlinear basis BNL

t generates the trajectory closest to the
optimal HJB solution. However, designing such an accurate
basis function for a general nonlinear system is not possible.
It is a common practice to use polynomial basis functions
such as BKL

t . The trajectory generated by BKL
t is clearly

closer to the optimal HJB solution compared to the linear
basis function BL

t as shown in Fig. 1. This demonstrates
the effectiveness of using nonlinear controllers for nonlinear
systems as compared to their linear counterparts.

The trajectory costs incurred for the choice of different
basis functions are summarized in Table I. For the choice
of the basis BNL

t , the corresponding inferred parameter was
Θ =

(
0.04268 −0.0524 −1.1012 0.10083

)T
which ap-

proximates (25). We observed that the computational time for
the BL

t and BKL
t basis is comparable. Even though BNL

t is
the closest approximation of the analytical HJB solution, it
was approximately 7 times slower compared to BKL

t .

TABLE I: Comparison of the controllers using various basis
functions for the oscillator model (24) with x0 = [3, 3].

Basis function Cost
HJB 1838.98

BL
t (x) 3619.86

BNL
t (x) 1869.47

BKL
t (x) 2410.297

B. Structured temperature control

The update in (21) can be extended to address structured
control problems by imposing a structure on the parameter
Θ. It can be shown that (21) holds for the non-zero subset
of each column of the structured Θ, thereby preserving the
structure during inference. In the interest of space, we omit
the derivation for structured controllers.
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Fig. 1: Comparison of the state and control trajectories of the
nonlinear oscillator for different choices of basis functions.

To demonstrate the structured control we consider the
temperature control example in [20]. The problem deals
with finding an optimal controller which controls a quantity
related to the airflow rate into four zones to achieve a desired
temperature. The zones form a rectangle such that zones 1,4
and zones 2,3 do not share a common wall. From a controls
perspective, the state x ∈ R4 represents the temperature
in the zones and u ∈ R4 denotes the control input. The
evolution of temperature in the zones is given by a linear
thermal dynamics model given by

xt+1 = Atxt + at +Btut +Wt (26)

such that ∀ i, j ∈ {1, · · · , 4}

Aij =

{
1− ∆

νiζi
−
∑4

j=1
∆

νiζij
, if i = j

∆
νiζij

, otherwise
(27)

Bij =

{
∆
νi

, if i = j

0 , otherwise
(28)

ai =
∆

νiζi
ϵ0 +

∆

νi
πi, Wi =

√
∆

νi
wi, (29)

where ϵ0 is the outdoor temperature, ∆ is the time resolution,
νi is the thermal capacitance of zone i, ζi denotes the
thermal resistance of windows and walls between zone i and
the environment, ζij denotes the thermal resistance between
zones i, j, πi represents the constant heat addition from
external sources into zone i, and wi ∼ N (0, 1) represents

the process noise in zone i. The optimal controller aims at
minimizing a quadratic cost function given by

Ci(xi, ui) = (xi − ϵ∗i )
2 + βiu

2
i (30)

where ϵ∗i is the desired temperature of zone i and βi is a trade
off parameter. A linear controller of the following form is
considered

ui = Kix+ ki. (31)

We solve the optimal control problem of achieving a desired
temperature in each zone governed by the dynamics in (26)-
(29) using Algorithm 1 with the following parameters

µx0
=

[
30 27 24 18

]T ◦C, Σx0
= 10−4I4,

Ft =
[
x1t+1

x2t+1
x3t+1

x4t+1

]T
, ht =

[
τt
]
,

βi = 0.01, ∆ = 60 sec, T = 100 steps, Σδ0:T−1
= 1e2,

Q0:T = I4, R0:T−1 = βiI4, ϵ∗ = 30◦C,

∀i, νi = 200 kJ/◦C, πi = 1 kW,

∀i, Ση =
∆× 6.25

ν2i
, ζi = 1◦C/kW,

∀i, j, ζij =

{
1 , if zone i, j share a common wall
0 , otherwise.

We apply the PIIC algorithm with three control structures.
We use a centralized structure where the controller of each
zone employs the temperature information of all the zones,
a partially decentralized structure where the controller of
each zone employs its own temperature information and
the temperature information of one adjacent zone (e.g., the
controller in zone 1 employs temperature information of zone
1 and zone 2, the controller in zone 2 employs temperature
information of zone 2 and zone 3, and so on), and a
decentralized structure where the controller of each zone
employs only its own temperature information.

Figure 2 shows the control inputs, and the root mean
squared error (RMSE) values of temperature for each zone
using the centralized, partially decentralized, decentralized
structure controllers. We observe that all the three structures
are able to generate control inputs appropriately to achieve

TABLE II: The comparison of various controller structures
for the HVAC system.

Controller
structure

Avg.
Cost

Θt

Decentralized 651.648


−0.091 0 0 0

0 0.180 0
0 0 0.385 0
0 0 0 1.102

14.356 8.557 4.095 −11.524



Partially de-
centralized

648.654


0.454 0 0 −0.675
−1.005 0.179 0 0

0 −0.056 0.265 0
0 0 −0.406 0.72

24.368 9.756 15.504 11.498



Centralized 645.443


0.582 −0.876 −0.878 −0.006
−0.876 0.583 0.002 −0.881
−0.875 0.003 0.583 −0.877
0.004 −0.875 −0.874 0.588
37.644 37.626 37.69 37.904


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Fig. 2: Evolution of control inputs and RMSE of temperature
in the four-zone HVAC system with different controller
structures inferred by the PIIC algorithm.

the desired temperature. The average cost for 250 Monte
Carlo simulations and the inferred control parameter Θ are
given in Table II. The controller with the centralized structure
incurs the lowest cost whereas the controller with the decen-
tralized structure incurs the highest cost. The decentralized
structure takes the larges number of time steps to reach
the desired temperature whereas the centralized structure
takes the least number of time steps. A similar trend was
observed in the RMSE values of the temperatures, and the
computational time required by each controller structure. The
partially decentralized structure that encodes the dependence
of zones performs better than the decentralized structure
overall and is found to be comparable to the centralized
structure. The lower performance of the decentralized struc-
ture is attributed to the lack of information resulting from
the decoupling of the states.

V. CONCLUSIONS AND FUTURE WORK

We propose the PIIC algorithm which solves the SOC
problem as a parameter inference problem. This algorithm
allows the use of both linear and nonlinear basis functions
to parameterize the controller, which enables us to infer
nonlinear optimal feedback control laws for nonlinear sys-
tems in a model-based setting. This was a major limitation

of the existing inference approaches that prescribe a linear
feedback control law for a nonlinear system which yield
sub-optimal trajectories. Two simulation examples demon-
strate the effectiveness of the proposed algorithm. Future
work includes extension of the formulation to encode safety
constraints and investigation of the PIIC algorithm for multi-
agent applications.
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