!'_ Computer Methods (MAE 3403)

Chapter 1
Introduction to Python

Numerical methods in engineering with Python 3

:_L General information

= Recap of Python: not a comprehensive manual
= Refreshing your previous coursework on Python

= If you know another language, it is not difficult to pick
up the rest as you learn

i Python

= Object-oriented language developed in 1980s as a
script language
= Used widely now in engineering and computer science
= Free, available on multiple all OS without mods
= Easier to learn, more readable

= Not compiled code but interpreted (differences?)
= Tested and debugged quickly compared to C and Fortran
= Do not produce stand-alone applications
= Need Python interpreter installed

i Similarity to MATLAB

solve Ax = b via Gauss elimination

function x = gaussElimin(a,b) from numpy import dot
n = length(b); def gaussElimin(a,b):
for k = 1:n-1 n = len(b)
for i= k+l:n for k in range(0,n-1):
if a(i,k) =0 for i in range(k+1,n):
lam = a(i,k)/a(k,k); if a[i,k] !'= 0.0:
a(i,k+1:n) = a(i,k+1:n) - lam*a(k,k+1:n); lam = a [i,k]/a[k,k]
b(i)= b(i) - lam*b(k); ali,k+1:n] = a[i,k+1:n] - lam*a[k,k+1:n]
end b[i] = b[i] - lam*b[k]
end for k in range(n-1,-1,-1):
end b[k] = (b[k] - dot(alk,k+1l:n],b[k+1:n]))/alk,k]
for k = n:-1:1 return b
b(k) = (b(k) - a(k,k+1:n)*b(k+1:n))/a(k,k);
end
X = b;

:_L Obtaining Python

= Www.python.org/getit
= Or install Anaconda

= Some needed extension modules: scipy, humpy,
matplotlib, etc.

= https://docs.python.org/3/tutorial

http://www.python.org/getit

i Variables and assignment

= Variables: a value of a given type stored in a fixed
memory location

= Variable names: letters, numbers, underscores, the
first character must be a letter or underscores
= dist vs. X, nRabbits vs. y

= X = 1: takes the known value 1, assigns that value to
a variable with name *x’.

:_L Assignment

= The equal sign ‘=" is different from a truth statement
(e.g., xequals 2),e.g., x=x+1
= Value and type may be changed dynamically

>>> b = 2 # b is integer type
>>> print(b) b is changed from an integer to

? | a floating number.
=>> b = b*¥2.0 # Now b is float type

=>> print(b)
4.0

= del x: clear variable x from the workspace

!L Type conversions

>»> b = -3.6
=»>d = "4.0’

>>> print(a + b)
1.4

=>>> print(int(b))
-3

>>> print(complex(a,b))

(5-3.63)

>>> print(float(d))

4.0

>>> print(int(d)) # This fails: d is a string

truncation

Traceback (most recent call last):
File "<pyshell#30>", line 1, in <module>
print(int(d))

ValueFrror- invalid lit+teral for int{Y with ba=ze 10-

int(a)

Converts a to integer

float(a)

Converts a to floating point

complex(a)

Converts to complexa + 0]

complex(a,b)

Converts to complex a + bj

?4-[}!'

$ Data types: Strings

= an array of characters enclosed in single or double
quotes: w = “"Hello World”

= String: indices to indicate the location of each character

IIIHIIIIH-MHHIIEI

Index

= W[6]? W[6:11] (sllcmg)?

:_h String operations

= More on slicing: [start:end:step]
= W[6:]: slice to the end, w[:5]: slice from the beginning
= W[::2]: every other character
= Negative index: counting from the end, w[6:-2]

s Concatenation: +

>>> Stringl

"Press return to exit’

>>> stringl "the program’

»>>> print(stringl + ' ' + stringl) # Concatenation
Press return to exit the program

>>> print(stringl[0:12]) # Slicing

Press return

10

:_L More operations

= dont’ -> w =‘don\t’

= str(1) becomes a string '1’

= W.upper(): turns to upper case
= W.count(‘a’): count the number of occurrence of ‘a’
= W.replace(‘a’,’'b’): replace ‘a’ in w by ‘b’
= len(w): length of the string w

m split;: > s="398"

»>>> print(s.split()) # Delimiter is white space
[!3:’ :g!’ :31:]

String

= String is an immutable object

= individual characters cannot be modified with an assignment
statement; it has a fixed length

>»>> § = 'Press return to exit’
>>»> s[0] = "p’
Traceback (most recent call last):
File '’"<pyshell#1>'", line 1, in 7
s[0] = "p’
TypeError: object doesn’t support item assignment

12

i Tuples

= A sequence of arbitrary
objects separated by
commas and enclosed
in parenthesis

= Single object: x = (2,)
= Supports the same

operations as strings,
also immutable

>»» rec = ('Smith’, 'John’,(6,23,68))
>>> lastName,firstName,birthdate = rec
>>> print(firstName)

John

>>>» birthYear = birthdate[2]

>>> print(birthYear)

68

>>> name = rec[l] + ' ' + recl[0]

>>> print(name)

John Smith

>>> print(rec[0:2])

(’Smith’, "John’)

This is a tuple
Unpacking the tuple

13

:_L Operations

= tuple_1 = (1,2,3,2)

= len(tuple_1)

= tuple_1.count(2)

= unpacking: a,b,c,d=tuple_1

= there are as many variables on the left as there are on the
right

14

:_h List

= Similar to tuple, but mutable. Enclosed by brackets

>»> a = [1.0, 2.0, 3.0] # Create a list

>>> a.append(4.0) # Append 4.0 to list
>>> print(a)
(1.0, 2.0, 3.0, 4.0]
>>> a.insert(0,0.0) # Insert 0.0 in position 0O
>>> print(a)
[¢c.0, 1.0, 2.0, 3.0, 4.0]
>>> print(len(a)) # Determine length of list
5
>»>> a[2:4] = [1.0, 1.0, 1.0] # Modify selected elements
>>> print(a)
[6.0, 1.0, 1.0, 1.0, 1.0, 4.0]
15

:_L Matrix: nested lists

>»>> a = [[1, 2, 3], \
[4, 5, 61, \

[7, 8, 9]1]
>>> print(afl]) # Print second row (element 1)
[4, 5, 6]
>>> print(alfl][2]) # Print third element of second row

6

= \: continuation character

= Indeed, we use array (from numpy) more often than
fist to represent matrices.

16

:_L List operations

mlist 1 =11, 2, 3]

s list_ 2 = ['Hello', "World]

= Adding lists: list_1 + list_2

= append: list_1.append(4)

= insert: list_1.insert(2,'center’)

= delete an item: del list_1[2]

s Check an item: 3 in list_1

= empty list: list_5 =[], list_5.append(5)

17

i List vs. tuple

= Tuples are immutable and usually contain
heterogeneous sequence of elements that are
accessed via unpacking

« [("apple’, 3), (‘banana’, 4) , (‘orange’, 1), ('pear’, 4)]

= Lists are mutable and usually contain homogeneous
elements accessed by iterating over the list

= [‘apple’, ‘banana’, ‘orange’, ‘pear’]

18

:_L Immutable vs. mutable objects

= Immutable objects: numbers, strings, tuples,...
= mutable objects: lists, dictionaries, sets,...

= immutable: reassignment doesn’t change the value of
the object. Python creates a new integer object and
reassigns the counter to reference the new object

counter = 100 m n
print(id(counter)) # memory address of counter
print(hex(id(counter))) # in hexadecimal

counter = 200
print(hex(id(counter))) # expect to be different from before

& Mutable

= ratings = [1,2,3]

= print(hex(id(ratings)))
= ratings.append(4)

= print(hex(id(ratings)))

$ immutable containing mutable objects

= low = [1,2,3] high = [4,5] rankings = (low,high) #
this is a tuple
= high.append(6)

2 &3
[1, 2, 3] [4, 5]

7 /
= -

:_h Possible confusion

= If @is a mutable object, 6 = g does not create a new
object b, but creates a new reference (pointer) to a.

= [0 create an independent copy of a list g, use ¢ = a/./.

>»>> a = [1.0, 2.0, 3.0]

=»>> b = a # 'b’ 1s an alias of 'a’

>»>> b[0] = 5.0 # Change 'b’

>>> print(a)

[5.0, 2.0, 3.0] # The change is reflected in ’'a’
>>> ¢ = a[:] # 'c' 1s an independent copy of 'a‘’
>>»>> c[0] = 1.0 # Change ’'c’

>>> print(a)

[5.0, 2.0, 3.0] # 'a' is not affected by the change
22

i Dictionaries

= Key-value pairs: each key maps to a corresponding
value, defined by a pair of braces {}, while elements
are a list of comma-separated key:value pairs

s dict_1 = {'apple':3, 'oragne":4, 'pear':2}
= Indexed by keys, accessed by keys: dict_1['apple’]

= dict_1.keys(), dict_1.values(), len(dict_1),
dict_1.items()

= Keys can be any immutable type (strings/numbers)

23

i Operations

= school_dict = {}

school_dict['UC Berkeley'] = "USA’

school_dict['Oxford'] = UK’

a Convert a list of tuples:
dict([("UC Berkeley", "USA"), (‘'Oxford’, 'UK"])

= 'UC Berkeley" In school_dict
= list(school_dict): turns the dictionary to a list of keys

24

:_L Sets

= Supports mathematical operations like union,
intersection, difference, etc.

= Defined by {}, elements separated by commas
m set_1 =set([1, 2, 2, 3, 2, 1, 2]), set('Banana’)

= Set_1.union(set_2), set_1.intersection(set_2),
setl.issubset(set_2), ...

= an unordered collection with no duplicate elements.

25

i Last time: difference between

26

$ Last time: difference between

= Shallow copy
a=>b

s Deep copy
a=Db[:]

27

i Operations

+ | Addition
— | Subtraction
¥ | Multiplication
/| Division
++ | Exponentiation
% | Modular division

a+=b a=a+b < | Less than

a-=>b a=a->b = | Greater than

a *=b a = a*b <= | Less than or equal to

a /=b a = a/b == | Greater than or equal to
a **= b | a = a**b == | Equal to

a %= b a = a%b '= | Notequal to

Arithmetic

Comparison

28

»»>> a = [1, 2, 3]
>>> print(3*s) # Repetition
Hello Hello Hello
>>> print(3*a) # Repetition
ri, 2, 3, 1, 2, 3, 1, 2, 3]
>>> print(a + [4, 5]) # Append elements
1, 2, 3, 4, 5]
>>> print(s + t) # Concatenation
Hello to you
>>> print(3 + s) # This addition makes no sense
Traceback (most recent call last):

File "<pyshell#13=", line 1, in <module:

print(3 + s)

TypeError: unsupported operand type(s) for +: 'int’ and ’'str’

:_L Logical expressions and operators

Operator
and

or

not

Example
Pand Q

PorQ

not P

= Boolean variable: true (=1) and false (=0)
n 3<4. true, 3>4: false
= Logical operators: and, or, not

Results

True if both P
and Q are True
False otherwise

True if either P
or Q is True
False otherwise

True if P is False
False if P is True 30

>>> a = 2 # Integer

>»>> b = 1.90 # Floating point
>»> Cc = 27 # String

>»>> print(a > b)

True

>>> print(a == c)

False

>>> print((a > b) and (a != c))
True

>>> print((a > b) or (a == b))
True

31

i Examples: Logical expressions
= (l1andnot 1) or(1and1)

s (3>2)+ (5>4)
s 143 >2+5

= (14+3) > (2+5)

32

i Conditionals

1if condition:
block

elif condition:
block

elif condition:
block

else:

block

def sign of a(a):

if a < 0.0:

sign = 'negative’
elif a = 0.0:

sign = 'positive’
else:

sign = 'zero’

return sign

a=1.5

print('a is ' + sign_of_a(a))

33

i Ternary operators

m one-line code to evaluate the first expression if the

condition is true, otherwise it evaluates the second
expression:

expression_If true If condition else expression _If false

is_student = True

person = 'student’ if is_student else 'not student’
print(person)

s Makes code more concise, commonly used in list

34

i Loops

while loop

forloop

while condition:
block

else:

block

for target in Ssequence:
block

nMax = 5§
n=1
a =[] # Create empty list

while n < nMax:
a.append(1.0/n) # Append element to list
n=n-+1

print(a)

nMax = &

a =[]

for n in range(l,nMax):
a.append(1.0/n)

print(a)

35

:_L Looping techniques

= looping through a list: for k in list:
= range(n): [0,1,...,n-1], so you can use for k in range(n):
= [terate position index and corresponding value of a list

= for k, v in enumerate(list): or for k, v in enumerate([‘tic’,’tac’,’toe’]):

= Loop a sequence/list in reverse order:
= for k in reversed(range(1,10,2)):

= Loop through a sorted order of list: for k in sorted(list)

36

:_L Looping techniques

= Loop two or more sequences/lists: use zip

= Loop through dictionaries:
knights = {'gallahad': 'the pure’, 'robin": 'the brave'}
for k, v in knights.items():
print(k,v)

37

i break and continue

= break: terminate any loop. will not run eflse

= continue: skip a portion of the loop. Immediately
returns to the beginning of the loop without executing
statements below continue

38

:_h Examples

list = ['Jack’, 'Jill’, 'Tim', 'Dave’]

name = eval(input(’'Type a name: ’)) # Python input prompt Type a name: 'Tim’
for i in range(len(list)): Tim is number 3 on the list
if 1ist[i] == name:
print(name,’'is number’,i + 1,'on the list’) Type a name: 'June’
break

June is not on the list
else:

print(name, 'is not on the list’)

x = [] # Create an empty list

for i in range(1,100):
if i%7 != 0: continue # If not divisible by 7, skip rest of loop
X.append(i) # Append i to the list

print(x)

39

i Comprehensions

= A way to do iterations: list (dictionary, set)
comprehensions

s List comprehensions:
[Output Input sequence Conditions]

= X = range(5) = X = range(5)
y = [i(**2 fori in x] y =[]
print(y) foriin Xx:
v.append(i**2)

print(y)

40

i More examples
sy = [i(**2 foriin xifi%2 == 0] print(y)

=y =[i +jforiinrange(5) forjin range(2)]
print(y)
y = 1]

for i in range(5):
for j in range(2):
y.-append(i + j)
print(y)

41

i Dictionary comprehension

s X ={a:1,'b:2 'c: 3}
{key:v**3 for (key, v) In x.items()}

42

i Core math functions

abs(a) Absolute value of a
max (sequence) | Largest element of sequence
min(sequence) | Smallest element of sequence

round(a,n) Round a to n decimal places
—lif a = b
cmp(a,b) Returns{ 0if a = b
lif a = b

s Other math functions available in the math module

:_L Input

= /nputprompt) accept user input. Displays the prompt
and reads a line of input converted to a string.

s eval(string): convert the string to a numerical value

a = input(’'Input a: ') Input a: 10.0
print(a, type(a)) # Print a and its type 10.0 <class ’'str’>
b = eval(a) 10.0 <class 'float'>
print(b,type(b)) # Print b and its type

Input a: 11%%*2

11*#*2 <class 'str'>

mad= eva/(/'npuz'(prompt)) 121 <class ’int’>

44

:_L Output

= print(objl, obj2, ...): convert objl, obj2, .. to strings
and print them on the same line, separated by space.

s newline: \n

»>> a = 1234.56789

»»> b = [2, 4, 6, 8]

>>»> print(a,b)

1234 .567890 [2, 4, 6, 8]

=>>> print(’'a =",a, '\nb =’,b)
a = 1234.56789

b =1[2, 4, 6, 8]

45

:_L formatted output

' fmtl}H{:fmt2}...’ . format (argl,arg2,...)

= fmtl, fmt2, ..., are the format specs for argl, arg2, ...

wd Integer
w.df | Floating point notation

w.de | Exponential notation

= W: width of the field, d: the number of digits after the
decimal point.

46

=»> a = 1234.

=>> n = 9876

>>> print('{:

1234.57

>>> print('n

n = 09876

>>> print('n

n =009876

>>> print(’{:
1.2346e+03

56789

[.2Ff}’ .format(a))

{:6d}’.format(n)) # Pad with spaces

{:06d}’ .format(n)) # Pad with zeros

12.4e} {:6d}’.format(a,n))
GB76

47

:_L Advanced print

= Add an r before the string. The r represents raw and

will render the text literally:
print(r"Now the string is raw! \n \r")

= Print f-string

my_float = 444 .44445
print(f'My float: {my_float:010.3f}')

https://the-examples-book.com/programming-languages/python/printing-and-f-strings .
4

:_L Example: matrix multiplication

= Check the dimensions (how?)
= NO. of cols of a should equal to no. of rows of b

= Get the dimension (size) of the product ¢ (how?)
= Initialize a list ¢ (how?)

s FOort

c[1]

ne 1,jth element of ¢: #how to o

1] =a[1][0]b[0][3] + a[t][1]b[1]
a[1][ncola-1]b[ncola-1][;]

= Requires a summation. How?

= Multiply matrices a and b, and save the result to c

htain c[i][j]?

IR

49

:_L mini-Quiz

= Given a = 1+ (3>2) + 5, what is the value of a?

= Write a logical expression to determine if a fortnight
(2 weeks) is longer than 100,000 seconds. In other
words, if a fortnight is longer, the expression should
evaluate to True. Otherwise, it should evaluate to

False.

50

	Default Section
	Slide 1: Computer Methods (MAE 3403)
	Slide 2: General information
	Slide 3: Python
	Slide 4: Similarity to MATLAB
	Slide 5: Obtaining Python

	Variable types
	Slide 6: Variables and assignment
	Slide 7: Assignment
	Slide 8: Type conversions
	Slide 9: Data types: Strings
	Slide 10: String operations
	Slide 11: More operations
	Slide 12: String
	Slide 13: Tuples
	Slide 14: Operations
	Slide 15: List
	Slide 16: Matrix: nested lists
	Slide 17: List operations
	Slide 18: List vs. tuple
	Slide 19: Immutable vs. mutable objects
	Slide 20: Mutable
	Slide 21: immutable containing mutable objects
	Slide 22: Possible confusion
	Slide 23: Dictionaries
	Slide 24: Operations
	Slide 25: Sets

	Operations
	Slide 26: Last time: difference between
	Slide 27: Last time: difference between
	Slide 28: Operations
	Slide 29: Examples
	Slide 30: Logical expressions and operators
	Slide 31: Examples
	Slide 32: Examples: Logical expressions

	Controls
	Slide 33: Conditionals
	Slide 34: Ternary operators
	Slide 35: Loops
	Slide 36: Looping techniques
	Slide 37: Looping techniques
	Slide 38: break and continue
	Slide 39: Examples
	Slide 40: Comprehensions
	Slide 41: More examples
	Slide 42: Dictionary comprehension
	Slide 43: Core math functions
	Slide 44: Input
	Slide 45: Output
	Slide 46: formatted output
	Slide 47
	Slide 48: Advanced print
	Slide 49: Example: matrix multiplication
	Slide 50: mini-Quiz

