
Computer Methods (MAE 3403)

Chapter 1

Introduction to Python

1Numerical methods in engineering with Python 3

General information

◼ Recap of Python: not a comprehensive manual

◼ Refreshing your previous coursework on Python

◼ If you know another language, it is not difficult to pick
up the rest as you learn

2

Python

◼ Object-oriented language developed in 1980s as a
script language

◼ Used widely now in engineering and computer science

◼ Free, available on multiple all OS without mods

◼ Easier to learn, more readable

◼ Not compiled code but interpreted (differences?)

◼ Tested and debugged quickly compared to C and Fortran

◼ Do not produce stand-alone applications

◼ Need Python interpreter installed 3

Similarity to MATLAB

4

solve Ax = b via Gauss elimination

Obtaining Python

◼ www.python.org/getit

◼ Or install Anaconda

◼ Some needed extension modules: scipy, numpy,
matplotlib, etc.

◼ https://docs.python.org/3/tutorial

5

http://www.python.org/getit

Variables and assignment

◼ Variables: a value of a given type stored in a fixed
memory location

◼ Variable names: letters, numbers, underscores, the
first character must be a letter or underscores

◼ dist vs. x, nRabbits vs. y

◼ x = 1: takes the known value 1, assigns that value to
a variable with name ‘x’.

6

Assignment

◼ The equal sign ‘=‘ is different from a truth statement
(e.g., x equals 2), e.g., x = x + 1

◼ Value and type may be changed dynamically

◼ del x: clear variable x from the workspace

7

b is changed from an integer to
a floating number.

Type conversions

8

truncation

Data types: Strings

◼ an array of characters enclosed in single or double
quotes: w = “Hello World”

◼ String: indices to indicate the location of each character

◼ w[6]? w[6:11] (slicing)?

9

String operations

◼ More on slicing: [start:end:step]

◼ w[6:]: slice to the end, w[:5]: slice from the beginning

◼ w[::2]: every other character

◼ Negative index: counting from the end, w[6:-2]

◼ Concatenation: +

10

More operations

◼ `don’t’ -> w = ‘don\’t’

◼ str(1) becomes a string ‘1’

◼ w.upper(): turns to upper case

◼ w.count(‘a’): count the number of occurrence of ‘a’

◼ w.replace(‘a’,’b’): replace ‘a’ in w by ‘b’

◼ len(w): length of the string w

◼ split:

11

String

◼ String is an immutable object
◼ individual characters cannot be modified with an assignment

statement; it has a fixed length

12

Tuples

◼ A sequence of arbitrary
objects separated by
commas and enclosed
in parenthesis
◼ Single object:

◼ Supports the same
operations as strings,
also immutable

13

Operations

◼ tuple_1 = (1,2,3,2)

◼ len(tuple_1)

◼ tuple_1.count(2)

◼ unpacking: a,b,c,d=tuple_1

◼ there are as many variables on the left as there are on the
right

14

List

◼ Similar to tuple, but mutable. Enclosed by brackets

15

Matrix: nested lists

◼ \: continuation character

◼ Indeed, we use array (from numpy) more often than
list to represent matrices.

16

List operations

◼ list_1 = [1, 2, 3]

◼ list_2 = ['Hello', 'World’]

◼ Adding lists: list_1 + list_2

◼ append: list_1.append(4)

◼ insert: list_1.insert(2,'center’)

◼ delete an item: del list_1[2]

◼ Check an item: 3 in list_1

◼ empty list: list_5 = [], list_5.append(5)
17

List vs. tuple

◼ Tuples are immutable and usually contain
heterogeneous sequence of elements that are
accessed via unpacking

◼ [('apple', 3), ('banana', 4) , ('orange', 1), ('pear', 4)]

◼ Lists are mutable and usually contain homogeneous
elements accessed by iterating over the list

◼ [‘apple’, ‘banana’, ‘orange’, ‘pear’]

18

Immutable vs. mutable objects

◼ immutable objects: numbers, strings, tuples,…

◼ mutable objects: lists, dictionaries, sets,…

◼ immutable: reassignment doesn’t change the value of
the object. Python creates a new integer object and
reassigns the counter to reference the new object
counter = 100

print(id(counter)) # memory address of counter

print(hex(id(counter))) # in hexadecimal

counter = 200

print(hex(id(counter))) # expect to be different from before

Mutable

◼ ratings = [1,2,3]

◼ print(hex(id(ratings)))

◼ ratings.append(4)

◼ print(hex(id(ratings)))

immutable containing mutable objects

◼ low = [1,2,3] high = [4,5] rankings = (low,high) #
this is a tuple

◼ high.append(6)

◼ print(rankings)

Possible confusion

◼ If a is a mutable object, b = a does not create a new
object b, but creates a new reference (pointer) to a.

◼ To create an independent copy of a list a, use c = a[:].

22

Dictionaries

◼ Key-value pairs: each key maps to a corresponding
value, defined by a pair of braces {}, while elements
are a list of comma-separated key:value pairs

◼ dict_1 = {'apple':3, 'oragne':4, 'pear':2}

◼ Indexed by keys, accessed by keys: dict_1['apple’]

◼ dict_1.keys(), dict_1.values(), len(dict_1),
dict_1.items()

◼ Keys can be any immutable type (strings/numbers)

23

Operations

◼ school_dict = {}
school_dict['UC Berkeley'] = 'USA’
school_dict['Oxford'] = ‘UK’

◼ Convert a list of tuples:
dict([("UC Berkeley", "USA"), ('Oxford', 'UK’)])

◼ "UC Berkeley" in school_dict

◼ list(school_dict): turns the dictionary to a list of keys

24

Sets

◼ an unordered collection with no duplicate elements.

◼ Supports mathematical operations like union,
intersection, difference, etc.

◼ Defined by {}, elements separated by commas

◼ set_1 = set([1, 2, 2, 3, 2, 1, 2]), set('Banana’)

◼ set_1.union(set_2), set_1.intersection(set_2),
set1.issubset(set_2), …

25

Last time: difference between

 a = b

 a = b[:]

26

Last time: difference between

◼ Shallow copy

 a = b

◼ Deep copy

 a = b[:]

27

Operations

28

Arithmetic Comparison

Examples

29

Logical expressions and operators

◼ Boolean variable: true (=1) and false (=0)

◼ 3<4: true, 3>4: false

◼ Logical operators: and, or, not

30

Operator Example Results

and P and Q True if both P
and Q are True
False otherwise

or P or Q True if either P
or Q is True
False otherwise

not not P True if P is False
False if P is True

Examples

31

Examples: Logical expressions

◼ (1 and not 1) or (1 and 1)

◼ (3 > 2) + (5>4)

◼ 1+3 > 2 + 5

◼ (1+3) > (2+5)

32

Conditionals

33

…

Ternary operators

◼ one-line code to evaluate the first expression if the
condition is true, otherwise it evaluates the second
expression:

expression_if_true if condition else expression_if_false

is_student = True
person = 'student' if is_student else 'not student'
print(person)

◼ Makes code more concise, commonly used in list
34

Loops

35

while loop

for loop

Looping techniques

◼ looping through a list: for k in list:

◼ range(n): [0,1,…,n-1], so you can use for k in range(n):

◼ Iterate position index and corresponding value of a list

◼ for k, v in enumerate(list): or for k, v in enumerate([‘tic’,’tac’,’toe’]):

◼ Loop a sequence/list in reverse order:

◼ for k in reversed(range(1,10,2)):

◼ Loop through a sorted order of list: for k in sorted(list)

36

Looping techniques

◼ Loop two or more sequences/lists: use zip

◼ Loop through dictionaries:
knights = {'gallahad': 'the pure', 'robin': 'the brave’}

for k, v in knights.items():

print(k,v)

37

break and continue

◼ break: terminate any loop. will not run else

◼ continue: skip a portion of the loop. Immediately
returns to the beginning of the loop without executing
statements below continue

38

Examples

39

Comprehensions

◼ A way to do iterations: list (dictionary, set)
comprehensions

◼ List comprehensions:
[Output Input_sequence Conditions]

◼ x = range(5)
y = [i**2 for i in x]
print(y)

40

◼ x = range(5)
y = []
for i in x:
 y.append(i**2)
print(y)

More examples

◼ y = [i**2 for i in x if i%2 == 0] print(y)

◼ y = [i + j for i in range(5) for j in range(2)]
print(y)

41

y = []
for i in range(5):

 for j in range(2):
 y.append(i + j)
print(y)

Dictionary comprehension

◼ x = {'a': 1, 'b': 2, 'c': 3}
{key:v**3 for (key, v) in x.items()}

42

Core math functions

◼ Other math functions available in the math module

43

Input

◼ input(prompt): accept user input. Displays the prompt
and reads a line of input converted to a string.

◼ eval(string): convert the string to a numerical value

◼ a = eval(input(prompt))

44

Output

◼ print(obj1, obj2, …): convert obj1, obj2, .. to strings
and print them on the same line, separated by space.

◼ newline: \n

45

formatted output

◼ fmt1, fmt2, …, are the format specs for arg1, arg2, …

◼ w: width of the field, d: the number of digits after the
decimal point.

46

47

Advanced print

◼ Add an r before the string. The r represents raw and

will render the text literally:
 print(r"Now the string is raw! \n \r")

◼ Print f-string

48

my_float = 444.44445
print(f'My float: {my_float:010.3f}')

https://the-examples-book.com/programming-languages/python/printing-and-f-strings

Example: matrix multiplication

◼ Multiply matrices a and b, and save the result to c

◼ Check the dimensions (how?)

◼ no. of cols of a should equal to no. of rows of b

◼ Get the dimension (size) of the product c (how?)

◼ Initialize a list c (how?)

◼ For the i,jth element of c: #how to obtain c[i][j]?

 c[i][j] = a[i][0]b[0][j] + a[i][1]b[1][j] + … +

 a[i][ncola-1]b[ncola-1][j]

◼ Requires a summation. How? 49

mini-Quiz

◼ Given a = 1+ (3>2) + 5, what is the value of a?

◼ Write a logical expression to determine if a fortnight
(2 weeks) is longer than 100,000 seconds. In other
words, if a fortnight is longer, the expression should
evaluate to True. Otherwise, it should evaluate to
False.

50

	Default Section
	Slide 1: Computer Methods (MAE 3403)
	Slide 2: General information
	Slide 3: Python
	Slide 4: Similarity to MATLAB
	Slide 5: Obtaining Python

	Variable types
	Slide 6: Variables and assignment
	Slide 7: Assignment
	Slide 8: Type conversions
	Slide 9: Data types: Strings
	Slide 10: String operations
	Slide 11: More operations
	Slide 12: String
	Slide 13: Tuples
	Slide 14: Operations
	Slide 15: List
	Slide 16: Matrix: nested lists
	Slide 17: List operations
	Slide 18: List vs. tuple
	Slide 19: Immutable vs. mutable objects
	Slide 20: Mutable
	Slide 21: immutable containing mutable objects
	Slide 22: Possible confusion
	Slide 23: Dictionaries
	Slide 24: Operations
	Slide 25: Sets

	Operations
	Slide 26: Last time: difference between
	Slide 27: Last time: difference between
	Slide 28: Operations
	Slide 29: Examples
	Slide 30: Logical expressions and operators
	Slide 31: Examples
	Slide 32: Examples: Logical expressions

	Controls
	Slide 33: Conditionals
	Slide 34: Ternary operators
	Slide 35: Loops
	Slide 36: Looping techniques
	Slide 37: Looping techniques
	Slide 38: break and continue
	Slide 39: Examples
	Slide 40: Comprehensions
	Slide 41: More examples
	Slide 42: Dictionary comprehension
	Slide 43: Core math functions
	Slide 44: Input
	Slide 45: Output
	Slide 46: formatted output
	Slide 47
	Slide 48: Advanced print
	Slide 49: Example: matrix multiplication
	Slide 50: mini-Quiz

