
Computer Methods (MAE 3403)

Root finding

1
Numerical methods in engineering with Python 3

Python Programming and Numerical Methods

Motivation

◼ Find the solutions to f(x)=0 (i.e., roots of f(x) =0),
where the function f is given.

◼ For example, quadratic functions have a formula

◼ Without a formula, e.g., f(x) = cos(x) – x, we use
iterative procedures to find roots:

◼ Start with an initial guess (important)

◼ Iteratively refine the guess

2

Tolerance

◼ Tolerance: a level of error acceptable for an
engineering application

◼ Iterative computation of roots: numerical convergence
implies a certain level of tolerance of errors

◼ Possible choices: |f(x)| is small enough, |xi+1 – xi| is
small enough

◼ Small enough: less than a small threshold e.

3

Newton-Raphson Method

◼ Best known method for finding roots: simple, fast

◼ Makes use of the derivative f’(x) and f(x)

◼ Iterative update of the estimate of a root as

4

Algorithm

◼ One iteration:

5

import numpy as np
f = lambda x: x**2 - 2

f_prime = lambda x: 2*x
x0 = 1.4
newton_raphson = x0 - (f(x0))/(f_prime(x0))

print("newton_raphson =", newton_raphson)
print("sqrt(2) =", np.sqrt(2))

Coding

Can you write a function myNewton(f, df, x0, tol) where
the output is an estimate of the root of f, f is a function
object, df is a function object to f’, x0 is an initial guess
and tol is the error tolerance on |f(x)| (i.e., when
|f(x)|<tol, convergence is achieved) ?

You can also add an argument "maxiter"

6

Secant method

◼ Replace the derivative f'(x) with an approximation

◼ Step 1: initialization of x0 and x1

◼ Step 2: for n = 1, 2, 3, …

◼ xn+1 = xn – f(xn) * (xn-xn-1)/(f(xn) - f(xn-1))

◼ Repeat until |xn+1 - xn| is small

7

Try these examples with Newton and
Secant method

8

◼ Try f(x) = x3 + 3x2 -2x-5 with an initial guess x = 0.29

◼ derivative is close to zero

◼ Try f(x) = x3 – 100x2 – x + 100 with an initial guess x
= 0

◼ What’s the obtained root?

Alternative in Python

9

◼ Existing function that performs root-finding

◼ fsolve from scipy.optimize

from scipy.optimize import fsolve

f = lambda x: x**3-100*x**2-x+100

xsol = fsolve(f, [2, 80])

https://docs.scipy.org/doc/scipy/referenc
e/generated/scipy.optimize.fsolve.html

10

◼ See examples

	Slide 1: Computer Methods (MAE 3403)
	Slide 2: Motivation
	Slide 3: Tolerance
	Slide 4: Newton-Raphson Method
	Slide 5: Algorithm
	Slide 6: Coding
	Slide 7: Secant method
	Slide 8: Try these examples with Newton and Secant method
	Slide 9: Alternative in Python
	Slide 10: https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.fsolve.html

