!’_ Computer Methods (MAE 3403)

Root finding

Numerical methods in engineering with Python 3
Python Programming and Numerical Methods

i Motivation

= Find the solutions to f(x)=0 (i.e., roots of f(x) =0),
where the function f is given.

= For example, quadratic functions have a formula

= Without a formula, e.g., f(x) = cos(x) — X, we use
iterative procedures to find roots:
= Start with an initial guess (important)
= [teratively refine the guess

i Tolerance

= Tolerance: a level of error acceptable for an
engineering application

= [terative computation of roots: numerical convergence
implies a certain level of tolerance of errors

= Possible choices: |f(x)]| is small enough, |Xi.; — Xi| is
small enough
= Small enough: less than a small threshold e.

$ Newton-Raphson Method

m Best known method for finding roots: simple, fast
s Makes use of the derivative f'(x) and f(x)
= Iterative update of the estimate of a root as

o f(zi—1)
Lo = Li—1 = Fg,)

i Algorithm

Let x be an estimate of the root of f(x) = 0.
Do until |[Ax] < &:

Compute Ax = —f(x)/f'(x).

letx «— x4+ Ax.

= One iteration: import numpy as np
f = lambda x: x**2 - 2
f_prime = lambda x: 2*x
x0=1.4
newton_raphson = x0 - (f(x0))/(f_prime(x0))
print("newton_raphson =", newton_raphson)
print("sqrt(2) =", np.sqrt(2))

i Coding

Can you write a function myNewton(f, df, x0, tol) where
the output is an estimate of the root of f, f is a function
object, df is a function object to f/, x0 is an initial guess
and tol is the error tolerance on [f(x)]| (i.e., when

|f(x)| <tol, convergence is achieved) ?

You can also add an argument "maxiter"

i Secant method

= Replace the derivative f'(x) with an approximation
= Step 1: initialization of x, and x4
mStep2: forn=1, 2, 3, ...

" Xns1 = Xq = F(Xn) * (X X00)/(F(X) - F(Xq1))
= Repeat until |X,., - X,| is small

Try these examples with Newton and
:_h Secant method

= Try f(x) = x3 + 3x2-2x-5 with an initial guess x = 0.29
= derivative is close to zero

s Try f(X) = x3—100x2 — x + 100 with an initial guess x
=0
= What's the obtained root?

$ Alternative in Python

s Existing function that performs root-finding
s fsolve from scipy.optimize

from scipy.optimize import fsolve

f = lambda x: x**3-100*x**2-x+100

xsol = fsolve(f, [2, 80])

https://docs.scipy.org/doc/scipy/referenc
e/generated/scipy.optimize.fsolve.html

scipy.optimize.
fsolve

fsolve(func, x8, args=(), fprime=None, full_output=08, col_deriv=0,

= See examples

xtol=1.49012e-08, maxfev=0, band=None, epsfcn=None, factor=100, diag=None)
[source]

Find the roots of a function.

Return the roots of the (non-linear) equations defined by func(x) = @ given a starting

estimate.

Parameters:
func : callable f{x, *args)
A function that takes at least one (possibly vector) argument, and returns a value of

the same length.

x0 : ndarray
The starting estimate for the roots of func(x) = @ .

args : tuple, optional

Any extra arguments to func.

fprime : callable f(x, *args) , optional
A function to compute the Jacobian of func with derivatives across the rows. By
default, the Jacobian will be estimated.

10

	Slide 1: Computer Methods (MAE 3403)
	Slide 2: Motivation
	Slide 3: Tolerance
	Slide 4: Newton-Raphson Method
	Slide 5: Algorithm
	Slide 6: Coding
	Slide 7: Secant method
	Slide 8: Try these examples with Newton and Secant method
	Slide 9: Alternative in Python
	Slide 10: https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.fsolve.html

