!'_ Computer Methods (MAE 3403)

Systems of Linear Equations

Numerical methods in engineering with Python 3
Python Programming and Numerical Methods



i Motivation

= Many engineering problems can be described or
approximated by linear relationships, e.g., combine
resistors, small deformations of rigid structures

= Important and fundamental in numerical methods

= nnlinear, algebraic equations with 7 unknowns



i Systems of linear equations

= Linear equations: unknown
variables appear linearly. dr + 3y — bz

31 +4x9 — 3 = —dx3 —2x — 4y + 52
=t =2 Tx + 8y
£U1£CQ—I—£C3:5 33——22

= A system of linear equations 9+ 1y — 62



i General m equations with n unknowns

ai1r1  + a12T2 + + a1,n—1Tn—1 + A1 Ty = b1,
a21T1 + a2 2T2 + a2 n—1Tn—1 + a2 nTy = ba,
Am—1,1T1 + Am—1,2T2 + + Am—1,n—1Ln—1 + Am—1,ndn — bm—la
Am,1T1 + A, 202 + + Am,n—1Ln—1 + Am ndn — bm
ar1 a2 ain T b1
a2 1 az 2 az n X2 L b
_am,l Am,2 am,n_ i Ln _ i bm i
~ ~~ 7 N— =

A x b



i Solutions to systems of linear equations

m Given the equation Ax = b (m equations, n unknowns),
we have three cases
= No solution for x, if rank(A) + 1 = rank([A, b])
= Unique solution for X, if rank([A, b]) = rank(A) & rank(A) = n

= Infinite number of solutions for x, if rank([A, b]) = rank(A) &
rank(A) < n



:_L How do we solve for x?

= Assume a unique solution exists for Ax = b

a1 ai2 ... Qip X1 b1
a2.1 a2 ... QA2n L2 . b2
Am,1 Um2 - Gmon| | Tno R
| S —— S S ——
A X b

s Gauss elimination
s Gauss Seidel iterative method




:_L Gauss elimination

45131 + 333‘2 — 55133 = 2 - 1 3
—2x1 —4x9 +d13 = O j|> _9 4
8r1 +38x2 = —3 3 8

Then eliminate the elements in the matrix.
» Choose a pivot equation A, y] =
« Eliminate elements in other equations
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Code your own Gauss elimination
i method (Ax = b)

= Elimination Phase

Elimination of row i below row k

-All AIE AIS Alk Alj Aln hl- 'Aij 'E—f'!lq —lﬂkj, }=k,k+l ..... n
0 Ap Axm - Ax -+ Ayj - A;m| b b; < b; — Aby
0 0 Az --- Az --- Azj -+ Azn|bg
0 0 0 e A o Akﬁ o Agn | bi «— pivot row Range Of | and k?
. for k in range(0,n-1):
0 0 0 - Ay - Ay - Au|b < row being for i in range(k+1,n):
. transformed
0 0 0 Ank Ay Apn | by |




$ Back substitution

[3]0]-

A1 A
0 A2
0 0
0 0

ﬂln
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$ Pseudo code (no pivoting)

— Gaussian Elimination — — Forward Elimination —
fork=1ton—1do fork=1ton—1do
fori=k+1tondo fori=k+1tondo
Aif. — Xik f e b; = b; — airbi
for j=k+1tondo endfor
Gij = G4 — ik andfor
endfor
endfor
endfor

— Backward Solve —

for 1 = n downto 1 do
s = b;
for j=1+1tondo
5§ =8 — 44T,

endfor
T; = sfay
endfor
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:_L [terative method: Gauss Seidel

= Always use the latest estimated value for each
elements in x.
= Assume initial values of x,,..., X, and then solve for x;
= Using the calculated x; and the rest of x to solve for X,
= Repeat the process until convergence.
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:_L Correction: Gauss Seidel for Ax = b

= In Gauss-Seidel, the computation of x(k+1) uses the elements
of x(k+1) that have already been computed and only the elements
of x(K) that have not been computed in the (k+1)-th iteration.

Input: initial values for all x;, i=1,...,n, x(©
for k in range(0, max_iter):
for i in range(0, n):
i J=1 j=i+1
#check convergence
if converged:
break y



:_L New slide: Gauss Jacobi

= In Gauss-Seidel, the computation of x(k+1) uses only the elements
of X% in the (k+1)-th iteration.

k1 1 k .
$£+):a—u(bzzaw$§)), 221,2,...,72,.

= Code up your own Jacobi method
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$ Code your own Gauss-Seidel algorithm

= Test on the previous example

4.56‘1 -+ 35172 — 55(53 = 2
—25(;1 — 495‘2 T 5333 —
835'1 T 835'2 = -3

s NOTE: Convergence of Gauss-Seidel requires specific
conditions. A sufficient (but not necessary) condition Is
that A Is diagonally dominant.
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* Python implementations

umerous and SIMPLE ways to solve systems of linear
equations in Python using the numpy module

= numpy.linalg.solve (LU decomposition) import numpy as np

A = np.array([[4, 3, -5],

:-21 _41 5]/

= Matrix inverse: 8, 8, 0]1)
y = np.array([2, 5, -3])

A_inv = np.linalg.inv(A) x = np.linalg.solve(A, y)

X = np.dot(A_inv, y) print(x)
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