Computer Methods (MAE 3403)

Systems of Linear Equations

Numerical methods in engineering with Python 3 Python Programming and Numerical Methods

Motivation

 Many engineering problems can be described or approximated by linear relationships, e.g., combine resistors, small deformations of rigid structures

Important and fundamental in numerical methods

n linear, algebraic equations with *n* unknowns

Systems of linear equations

Linear equations: unknown variables appear linearly. $3x_1 + 4x_2 - 3 = -5x_3$ -2x - 4y + 5z = 5

 $\frac{-x_1 + x_2}{x_3} = 2 \qquad \qquad 7x + 8y = -3 \\ x_1 x_2 + x_3 = 5 \qquad \qquad x + 2z = 1$

A system of linear equations

9 + y - 6z = 6

General m equations with n unknowns

$$\underbrace{\begin{bmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} \\ a_{2,1} & a_{2,2} & \dots & a_{2,n} \\ \dots & \dots & \dots & \dots \\ a_{m,1} & a_{m,2} & \dots & a_{m,n} \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix}}_{x} = \underbrace{\begin{bmatrix} b_1 \\ b_2 \\ \dots \\ b_m \end{bmatrix}}_{b}$$

Solutions to systems of linear equations

- Given the equation Ax = b (m equations, n unknowns), we have three cases
 - No solution for x, if rank(A) + 1 = rank([A, b])
 - Unique solution for x, if rank([A, b]) = rank(A) & rank(A) = n
 - Infinite number of solutions for x, if rank([A, b]) = rank(A) & rank(A) < n</p>

How do we solve for x?

Assume a unique solution exists for Ax = b

- Gauss elimination
- Gauss Seidel iterative method

Gauss elimination

$$Ax = y$$

$$4x_1 + 3x_2 - 5x_3 = 2$$

$$-2x_1 - 4x_2 + 5x_3 = 5$$

$$8x_1 + 8x_2 = -3$$

$$Ax = y$$

$$\begin{bmatrix} 4 & 3 & -5 \\ -2 & -4 & 5 \\ 8 & 8 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Then eliminate the elements in the matrix.

- Choose a pivot equation
- Eliminate elements in other equations

5

 $[A, y] = \begin{bmatrix} 4 & 3 & -5 & 2 \\ -2 & -4 & 5 & 5 \\ 8 & 8 & 0 & -3 \end{bmatrix}$

$$\begin{bmatrix} A, y \end{bmatrix} = \begin{bmatrix} 4 & 3 & -5 & 2 \\ -2 & -4 & 5 & 5 \\ 8 & 8 & 0 & -3 \end{bmatrix} \longrightarrow \begin{bmatrix} 4 & 3 & -5 & 2 \\ 0 & -2.5 & 2.5 & 6 \\ 8 & 8 & 0 & -3 \end{bmatrix} \\ \begin{bmatrix} 4 & 3 & -5 & 2 \\ 0 & -2.5 & 2.5 & 6 \\ 0 & 0 & 12 & -2.2 \end{bmatrix} \longleftarrow \begin{bmatrix} 4 & 3 & -5 & 2 \\ 0 & -2.5 & 2.5 & 6 \\ 0 & 2 & 10 & -7 \end{bmatrix}$$

Solve for x₃ = -2.2/12

- Substitute x₃ to the 2nd equation and solve for x₂
- Substitute x₂, x₃ to the 1st equation and solve for x₁

Code your own Gauss elimination method (Ax = b)Elimination Phase Elimination of row i below row k $A_{ij} \leftarrow A_{ij} - \lambda A_{kj}, \quad j = k, k+1, \dots, n$ $A_{11} A_{12} A_{13} \cdots A_{1k} \cdots A_{1j} \cdots A_{1n} | b_1]$ $0 \quad A_{22} \quad A_{23} \quad \cdots \quad A_{2k} \quad \cdots \quad A_{2j} \quad \cdots \quad A_{2n} \quad b_2$ $b_i \leftarrow b_i - \lambda b_k$ $0 \quad 0 \quad A_{33} \quad \cdots \quad A_{3k} \quad \cdots \quad A_{3j} \quad \cdots \quad A_{3n}$ 0 $0 \quad 0 \quad \cdots \quad A_{kk} \quad \cdots \quad A_{kj} \quad \cdots \quad A_{kn} \quad b_k$ Range of i and k? \leftarrow pivot row for k in range(0,n-1): $0 \quad 0 \quad 0 \quad \cdots \quad A_{ik} \quad \cdots \quad A_{ij} \quad \cdots \quad A_{in} \quad b_i \quad \leftarrow \text{ row being}$ for i in range(k+1,n): transformed

Back substitution

$$\begin{bmatrix} \mathbf{A} \mid \mathbf{b} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} & A_{13} & \cdots & A_{1n} & b_1 \\ \mathbf{0} & A_{22} & A_{23} & \cdots & A_{2n} & b_2 \\ \mathbf{0} & \mathbf{0} & A_{33} & \cdots & A_{3n} & b_3 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \cdots & A_{nn} & b_n \end{bmatrix}$$

$$x_k = \left(b_k - \sum_{j=k+1}^n A_{kj} x_j\right) \frac{1}{A_{kk}}, \quad k = n - 1, n - 2, \dots, 1$$

Pseudo code (no pivoting)

- Gaussian Elimination - Forward Elimination - Backward Solve for k = 1 to n - 1 do for k = 1 to n - 1 do for i = n downto 1 do for i = k + 1 to n do for i = k + 1 to n do $s = b_i$ $a_{ik} = a_{ik}/a_{kk}$ $b_i = b_i - a_{ik}b_k$ for j = i + 1 to n do for j = k + 1 to n do endfor $s = s - a_{ij}x_j$ $a_{ij} = a_{ij} - a_{ik}a_{kj}$ endfor endfor endfor $x_i = s/a_{ii}$ endfor endfor endfor

Iterative method: Gauss Seidel

- Always use the latest estimated value for each elements in x.
 - Assume initial values of x₂,..., x_n and then solve for x₁
 - Using the calculated x₁ and the rest of x to solve for x₂
 - Repeat the process until convergence.

Correction: Gauss Seidel for Ax = b

- In Gauss-Seidel, the computation of x^(k+1) uses the elements of x^(k+1) that have already been computed and only the elements of x^(k) that have not been computed in the (k+1)-th iteration.
- Input: initial values for all x_i , i=1,...,n, $x^{(0)}$

for k in range(0, max_iter):

for i in range(0, n):

$$x_i^{(k+1)} = rac{1}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^n a_{ij} x_j^{(k)}
ight)$$

#check convergence

if converged:

break

New slide: Gauss Jacobi

 In Gauss-Seidel, the computation of x^(k+1) uses only the elements of x^(k) in the (k+1)-th iteration.

$$x_i^{(k+1)} = rac{1}{a_{ii}} \left(b_i - \sum_{j
eq i} a_{ij} x_j^{(k)}
ight), \quad i=1,2,\ldots,n.$$

Code up your own Jacobi method

Code your own Gauss-Seidel algorithm

Test on the previous example

$$4x_1 + 3x_2 - 5x_3 = 2$$

$$-2x_1 - 4x_2 + 5x_3 = 5$$

$$8x_1 + 8x_2 = -3$$

NOTE: Convergence of Gauss-Seidel requires specific conditions. A sufficient (but not necessary) condition is that A is diagonally dominant.

Python implementations

- Numerous and SIMPLE ways to solve systems of linear equations in Python using the numpy module
- numpy.linalg.solve (LU decomposition)
- Matrix inverse:

 $A_inv = np.linalg.inv(A)$ x = np.dot(A_inv, y)