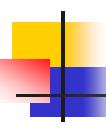


Computer Methods (MAE 3403)


Advanced interpolation methods

We've covered so far

Linear + Cubic Spline interpolation

 There are more complicated and convenient interpolation methods implemented in Python

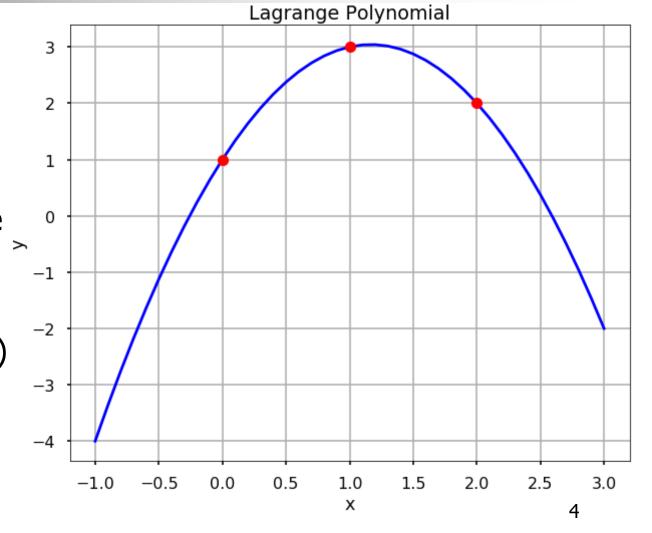
Lagrange Polynomial Interpolation

Cubic spline: joins multiple cubic polynomials

• Lagrange polynomial L(x): finds a single polynomial that goes through all points.

$$L(x) = \sum_{i=1}^{n} y_i P_i(x)$$
$$P_i(x) = \prod_{j=1, j \neq i}^{n} \frac{x - x_j}{x_i - x_j}$$

• Can you verify $L(x_i) = y_i$?


Implementation

 lagrange function in scipy.interpolate does everything for us

from scipy.interpolate import lagrange

f = lagrange(x, y)
fig = plt.figure(figsize = (10,8))
plt.plot(x_new, f(x_new), 'b', x, y, 'ro')

Refer to interp_example.py

griddata from scipy.interpolate

- Interpolate unstructured Ddimensional data
- Reference from https://docs.scipy.org/doc/scipy/r eference/generated/scipy.interpol ate.griddata.html
- Refer to griddata_exp.py

scipy.interpolate.

griddata

```
griddata(points, values, xi, method='linear', fill_value=nan,
rescale=False)
[source]
```

Interpolate unstructured D-D data.

Parameters:

points: 2-D ndarray of floats with shape (n, D), or length D tuple of 1-D ndarrays with shape (n,).

Data point coordinates.

values: ndarray of float or complex, shape (n,)

Data values.

xi: 2-D ndarray of floats with shape (m, D), or length D tuple of ndarrays broadcastable to the same shape.

Points at which to interpolate data.

method : {'linear', 'nearest', 'cubic'}, optional

Method of interpolation. One of

nearest

return the value at the data point closest to the point of interpolation. See NearestNDInterpolator for more details.

linear

tessellate the input point set to N-D simplices, and interpolate linearly on each simplex. See **LinearNDInterpolator** for more details.

cubic (1-D)

return the value determined from a cubic spline.

cubic (2-D)

return the value determined from a piecewise cubic, continuously differentiable (C1), and approximately curvature-minimizing polynomial surface. See CloughTocher2DInterpolator for more details.