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Overview

v

Deviate from the textbook to present a systematic
development of nonlinear filtering and smoothing

Probabilitist models
Generic filtering and smoothing equations

Application to the basic state-variable model

vvyyypy

Reference: Bayesian filtering and smoothing, 2013, Cambridge
University Press



Classification

Depending on the relative relationship of total number of available
measurements up to time step N and the time point k at which we
estimate x(k)

> k > N: prediction
> k = N: filtering
> k < N: smoothing.
Notation: X(k|j), xx = x(k), x1:k—1



Probabilistic state space model

We extend the basic state-variable model to a generic model given
by a sequence of conditional probability distributions:

Xie ~ p(Xk|Xk—1)
zy ~ p(zk|xx)

where



Example: the basic state-variable model
What is the probabilistic state-space model?
x(k+1)=®(k+1,k)x(k)+T(k+ 1, k)w(k) +V(k+ 1, k)u(k)
z(k) = H(k)x(k) + v(k), k=0,1,---.



Markov properties

The states x,, k =0,1,2,---, form a Markov sequence, which
satisfies

> p(xk|x1:k—1, Z1:k—1) = P(Xk|Xk—1)

> p(Xk—1|Xk:N, Zk:n) = P(Xk—1]Xk)-

» Conditional independence of measurements:

p(zi| X1k, 21:k—1) = P(Yi|XK)-



Example: Gaussian random walk

Xi41 = Xk + Wi, wi—1 ~ N(0, Q),
Z = Xk + Vi, Vg NN(O, R)



Joint distribution, likelihood, and posterior

» Joint prior distribuiton:
p(xo:n) =
> Joint likelihood distribution
p(z1:n|xo0:n) =
» Posterior distribution from Bayes' rule:

p(xo:n|y1:n) =



Challenges in real time

» The number of computations per time step increases as new
observations arrive.

» Develop recursive estimation steps to compute prediction,
filtering, and smoothing distributions.

» Only a constant number of computations are done at each
time step.

» Start with Bayesian filtering equations (which will include
prediction)

> Move to Bayesian smoothing equations



Generic Bayesian filtering equations

» Bayesian filtering: compute the marginal distribution

P(Xk|)/1:k)-
» Fundamental equations for recursive Bayesian filtering at time
step k
> Initialization: start with the prior distribution p(xp)
» Prediction step: Chapman-Kolmogorov equation

plsulzvscs) = [ pOxxi)plocalznir) s

» Update step: via Bayes' rule

p(zk|xic ) P(Xic| z1:6—1)
Z

p(xk|z1:6—1, 2) =

Zi = /P(Zk|xk)P(Xk|lek71)ka-



Graphically



Proof

Joint distribution of xx and xx_1:

Marginalization of xx_1 yields:

Bayes rule for xi given z, and zy.4_1, i.e., z1.4:



Developing the Kalman filter
Closed-form solution to the Bayesian filtering equations for linear
Gaussian dynamic and measurement models
x(k+1)=®(k+1,k)x(k)+T(k+ 1, k)w(k)+WV(k+1, k)u(k)
z(k) = H(k)x(k) + v(k), k=0,1,---.

> v(k) ~ N(0,R(k)), w(k) ~ N (0, Q(k)),
x(0) ~ N(mx(0), Px(0)).
» Probabilistic models



Two useful Lemmas

Lemma 1 Suppose x ~ N (m, P) and y|x ~ N(Hx + u, R), then
the joint distribution of x, y and the marginal distribution of y are

given by
X m P PHT
~ N 5 T .
3% Hm+ u HP HPH'" + R

Lemma 2: conditional distribution Suppose
X a A C
()~ (() (& 8)

XNN(37A)v yNN(baB)
x|y ~N(a+ CB Yy —b),A—CB7ICT)
yIx ~N(b+ C"B™}(x—a),B—- CTATL().

Then,



The KF equations from the Bayesian filtering equation
Assume that p(xx_1|z1.6-1) ~ N(mk_1, Pxk_1)
Prediction step: Calculate p(xk|z1.x—1) from
Pk, Xk—1|z1:k-1) = P(xk|xk—1)P(Xk—1|21:k-1)

Update step: p(xk|z1:k) < p(zk|xk)p(xk|z1.4k—1) calculated from
P(Xk; k| z1:k—1)-



Final equations adapted to the basic state-variable model

x(k+1)=®(k+1,k)x(k)+T(k+1,k)w(k) + V(k + 1, k)u(k)
z(k) = H(k)x(k) + v(k), k=0,1,---.
Prediction:
R(k +1|k) = &(k + 1, k)R(k|k) + W(k + 1, k)u(k)
P(k +1]k) = &(k + 1, k)P(k|K)®T (k + 1, k) + T(k + 1, k) Q(K)I' T (k + 1, k)
Update: Z(k) = z(k) — H(k)x(k + 1|k)

Rk + 1k + 1) = #(k + 1|k) + K(k + 1)Z(k + 1]k)
K(k+1) = P(k+ 1|k)HT (k + 1)(H(k + 1)P(k + 1|k)HT (k + 1) + R(k + 1)) !
P(k+1lk+1) = (I — K(k + 1)H(k + 1))P(k + 1]k).



Comments



Example: Gaussian random walk



Bayesian smoothing: Fixed-interval

» Compute the marginal posterior distribution p(xk|z1.n), where
N > k.

» Smoothing also uses future measurements: Fixed-interval
smoothing cannot be implemented online.

» Other types of smoothing:

> Fixed-point smoother: p(xk|z1j), j =k +1,---, with a fixed
k. In this case, we improve our estimate of a state at a
particular time by using future measurements. It can be
calculated online, but subject to a delay of (j — k) steps.

> fixed-lag smoother: p(xk|Xk:k+1), kK =0,1,---, with a fixed L
(positive integer). It can be used online where a constant lag
between measurements and state estimates is permissible,
subject to L steps of delay.



Bayesian smoothing equations

Forward computation: obtain the filtering posterior state
distributions, p(xx|z1.x), k =1,---, N, via a filter.

Backward computation:

PUXk+1 Xk )P\Xk+1]21:T
p(Xk’ZI:N):P(Xk‘Zl;k)/ (Xk+1]xu ) P(Xk 41 )dxk+l
P(Xk+1|21:k)

> p(xk|z1:6):
> p(xkt1]xk):
> p(Xk+1]|z1:k):

> p(Xkt1]|z1:7):



Why?

Markov property: p(xk|Xk+1,z1:n) =

Bayes' rule: p(xk|xk+1,z1:n) =

Joint distribution p(x, Xk1+1|z1:n) =

Marginal distribution p(xk|z1:n) = [ P(Xk, Xk+1]21:n ) dXk+1



Rauch-Tung-Striebel (RTS) smoother: Kalman smoother

x(k+1) = &k + 1, k)x(k) + T(k + 1, )w(k) + W(k + 1, k)u(k)
2(k) = H(K)x(k) + v(k), k=0,1,---.

» Closed-form smoother equations for linear Gaussian dynamic
and measurement models

> Look for smoothed distributions p(xx|z1.7) = N(my, P}).

» Consists of a forward pass and a backward pass

» Forward pass: the Kalman filter
» Backward pass: backward-running recursive predictor



RTS Smoother Algorithm adapted to the basic model

Forward pass: Perform the KF to obtain X(k|k), X(k|k — 1),
P(k|lk —1), and P(k|k), k=1,--- ,N.
Backward pass: for k=N —1,N—2,---,0 as
x(k|N) = &(k|k) + A(K)[&(k 4+ 1|N) — R(k + 1]k)]
A(k) = P(k|k)®T (k + 1, k)P~ (k + 1|k)
P(k|N) = P(k|k) + A(K)[P(k + 1|N) — P(k + 1|k)]AT (k).

> P(k|N):
> Availability of %(k|k), A(k), R(k + 1|N), R(k + 1[k),
P(k +1|N), P(k|k), P(k + 1|k):



Example



Nonlinear filters and smoothers

» Practical applications involve nonlinear dynamic and
measurement models.

» Posterior distributions are no longer Gaussian even if the
added noise is Gaussian.
> A large class of nonlinear filters aim at approximating the
posterior distributions as Gaussian distributions
» Extended Kalman filter (EKF)
» Unscented Kalman filter (UKF)
» Gaussian filter, ...
» Another type of popular nonlinear filters is Particle filters
(PF), using a similar concept to MCMC.

» For each nonlinear filter, there is a corresponding nonlinear
smoother, e.g., EKS, Particle smoother.



Taylor series expansion in linearization

Consider x ~ N (m, P) and y = g(x).

> p(y) = |[J(y)IN(g~t(y)|m, P), where J(y) is the Jacobian
matrix of the inverse transform g~1(y).

» Except linear g, p(y) is difficult to obtain and handle.

First-order Taylor series expansion (linearization):
> Let x = m+ dx, where dx ~ N(0, P).

g(x) = g(m+ dx) = g(m) + Gx(m)dox + H.O.T.

Gx(m) is the Jacobian matrix of g(x) evaluated at x = m.



Expectation, covariance, joint distribution with
linearization



A General Case: Mean, covariance, joint distribution

XNN(m,P),WNN((),Q)?y:g(X7q)



Extended Kalman filter

e Key idea: linearization, assume Gaussian distributions for
posterior
e Generic model:

Xk = F(Xk—1, Uk—1, Wi—1),  Wik—1 ~ N(0, Qx—1)
2z = h(xi, vi), vk ~ N (0, Rk).

e Linearization
f(Xk—1, tk—1, wi—1) = f(mg_1, ux—1,0) + Fy k6xx—1 + Fu xWi—1

h(Xk, Vk) ~ h(mk, 0) + HXJ((SX/( + Hv,kv(k)



EKF algorithm

Prediction:

Update:



Comments

» Advantage of EKF: simplicity compared to its performance.
» Disadvantages of EKF:

» Local linear approximation may not be sufficient for
considerable nonlinearity.

» Also not applicable to non-Gaussian distributions.

» Requires differentiable dynamics and measurement models.

» Computation of Jacobian matrices can be error prone.

» Despite all these disadvantages, its simplicity makes EKF a

first try and a common engineering approach to nonlinear
filtering.



Example



Gaussian filters

» Unify various Gaussian approximations to nonlinear
transforms: approximate computation of the expectation

Elg(x)] = / ()N (x|m, P)dx.

> If we can compute the above integral, we can then match the
first/second order moments of the Gaussian approximation of
(x,y) to the true moments.



Moment matching for y = g(x, w), x ~ N (m, P),
w ~ N(0, Q)

Approximate joint distribution of (x, y)

()~ () (& 50)



Gaussian filter

e Assume we can compute the integrals numerically and
p(xk|z1:k) = N (my, Py).
e Generic model:

Xk = F(Xk—1, Uk—1, Wi—1),  Wik—1 ~ N(0, Qx—1)
Zj = h(Xk7 Vk), Vi ~ ./\[(07 Rk)

» Prediction:

> Update:



Computation of the integral

vVvyvyVvVvyy

Linearization leads to EKF
Gauss-Hermite quadratures
Cubature rules

Unscented Transforms
Bayes-Hermite quadrature

Monte-Carlo integration



