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Overview

▶ Deviate from the textbook to present a systematic
development of nonlinear filtering and smoothing

▶ Probabilitist models

▶ Generic filtering and smoothing equations

▶ Application to the basic state-variable model

▶ Reference: Bayesian filtering and smoothing, 2013, Cambridge
University Press



Classification

Depending on the relative relationship of total number of available
measurements up to time step N and the time point k at which we
estimate x(k)

▶ k > N: prediction

▶ k = N: filtering

▶ k < N: smoothing.

Notation: x̂(k |j), xk = x(k), x1:k−1



Probabilistic state space model
We extend the basic state-variable model to a generic model given
by a sequence of conditional probability distributions:

xk ∼ p(xk |xk−1)

zk ∼ p(zk |xk)
where



Example: the basic state-variable model
What is the probabilistic state-space model?

x(k + 1) = Φ(k + 1, k)x(k) + Γ(k + 1, k)w(k) + Ψ(k + 1, k)u(k)

z(k) = H(k)x(k) + v(k), k = 0, 1, · · · .



Markov properties
The states xk , k = 0, 1, 2, · · · , form a Markov sequence, which
satisfies
▶ p(xk |x1:k−1, z1:k−1) = p(xk |xk−1)

▶ p(xk−1|xk:N , zk:N) = p(xk−1|xk).

▶ Conditional independence of measurements:

p(zk |x1:k , z1:k−1) = p(yk |xk).



Example: Gaussian random walk

xk+1 = xk + wk , wk−1 ∼ N (0,Q),

zk = xk + vk , vk ∼ N (0,R).



Joint distribution, likelihood, and posterior

▶ Joint prior distribuiton:

p(x0:N) =

▶ Joint likelihood distribution

p(z1:N |x0:N) =

▶ Posterior distribution from Bayes’ rule:

p(x0:N |y1:N) =
≈



Challenges in real time

▶ The number of computations per time step increases as new
observations arrive.

▶ Develop recursive estimation steps to compute prediction,
filtering, and smoothing distributions.

▶ Only a constant number of computations are done at each
time step.

▶ Start with Bayesian filtering equations (which will include
prediction)

▶ Move to Bayesian smoothing equations



Generic Bayesian filtering equations

▶ Bayesian filtering: compute the marginal distribution
p(xk |y1:k).

▶ Fundamental equations for recursive Bayesian filtering at time
step k
▶ Initialization: start with the prior distribution p(x0)
▶ Prediction step: Chapman-Kolmogorov equation

p(xk |z1:k−1) =

∫
p(xk |xk−1)p(xk−1|z1:k−1)dxk−1

▶ Update step: via Bayes’ rule

p(xk |z1:k−1, zk) =
p(zk |xk)p(xk |z1:k−1)

Zk

Zk =

∫
p(zk |xk)p(xk |z1:k−1)dxk .



Graphically



Proof
Joint distribution of xk and xk−1:

Marginalization of xk−1 yields:

Bayes rule for xk given zk and z1:k−1, i.e., z1:k :



Developing the Kalman filter
Closed-form solution to the Bayesian filtering equations for linear
Gaussian dynamic and measurement models

x(k + 1) = Φ(k + 1, k)x(k) + Γ(k + 1, k)w(k) + Ψ(k + 1, k)u(k)

z(k) = H(k)x(k) + v(k), k = 0, 1, · · · .

▶ v(k) ∼ N (0,R(k)), w(k) ∼ N (0,Q(k)),
x(0) ∼ N (mx(0),Px(0)).

▶ Probabilistic models



Two useful Lemmas

Lemma 1 Suppose x ∼ N (m,P) and y |x ∼ N (Hx + u,R), then
the joint distribution of x , y and the marginal distribution of y are
given by (

x
y

)
∼ N

((
m

Hm + u

)
,

(
P PHT

HP HPHT + R

))
.

Lemma 2: conditional distribution Suppose(
x
y

)
∼ N

((
a
b

)
,

(
A C
CT B

))
.

Then,
x ∼ N (a,A), y ∼ N (b,B)

x |y ∼ N (a+ CB−1(y − b),A− CB−1CT )

y |x ∼ N (b + CTB−1(x − a),B − CTA−1C ).



The KF equations from the Bayesian filtering equation
Assume that p(xk−1|z1:k−1) ∼ N (mk−1,Pk−1)
Prediction step: Calculate p(xk |z1:k−1) from
p(xk , xk−1|z1:k−1) = p(xk |xk−1)p(xk−1|z1:k−1)

Update step: p(xk |z1:k) ∝ p(zk |xk)p(xk |z1:k−1) calculated from
p(xk , zk |z1:k−1).



Final equations adapted to the basic state-variable model

x(k + 1) = Φ(k + 1, k)x(k) + Γ(k + 1, k)w(k) + Ψ(k + 1, k)u(k)

z(k) = H(k)x(k) + v(k), k = 0, 1, · · · .

Prediction:

x̂(k + 1|k) = Φ(k + 1, k)x̂(k|k) + Ψ(k + 1, k)u(k)

P(k + 1|k) = Φ(k + 1, k)P(k|k)ΦT (k + 1, k) + Γ(k + 1, k)Q(k)ΓT (k + 1, k)

Update: z̃(k) = z(k)− H(k)x̂(k + 1|k)

x̂(k + 1|k + 1) = x̂(k + 1|k) + K(k + 1)z̃(k + 1|k)

K(k + 1) = P(k + 1|k)HT (k + 1)(H(k + 1)P(k + 1|k)HT (k + 1) + R(k + 1))−1

P(k + 1|k + 1) = (I − K(k + 1)H(k + 1))P(k + 1|k).



Comments



Example: Gaussian random walk



Bayesian smoothing: Fixed-interval

▶ Compute the marginal posterior distribution p(xk |z1:N), where
N > k .

▶ Smoothing also uses future measurements: Fixed-interval
smoothing cannot be implemented online.

▶ Other types of smoothing:
▶ Fixed-point smoother: p(xk |z1:j), j = k + 1, · · · , with a fixed

k . In this case, we improve our estimate of a state at a
particular time by using future measurements. It can be
calculated online, but subject to a delay of (j − k) steps.

▶ fixed-lag smoother: p(xk |xk:k+L), k = 0, 1, · · · , with a fixed L
(positive integer). It can be used online where a constant lag
between measurements and state estimates is permissible,
subject to L steps of delay.



Bayesian smoothing equations

Forward computation: obtain the filtering posterior state
distributions, p(xk |z1:k), k = 1, · · · ,N, via a filter.

Backward computation:

p(xk |z1:N) = p(xk |z1:k)
∫

p(xk+1|xk)p(xk+1|z1:T )
p(xk+1|z1:k)

dxk+1

▶ p(xk |z1:k):
▶ p(xk+1|xk):
▶ p(xk+1|z1:k):

▶ p(xk+1|z1:T ):



Why?

Markov property: p(xk |xk+1, z1:N) =

Bayes’ rule: p(xk |xk+1, z1:N) =

Joint distribution p(xk , xk+1|z1:N) =

Marginal distribution p(xk |z1:N) =
∫
p(xk , xk+1|z1:N)dxk+1



Rauch-Tung-Striebel (RTS) smoother: Kalman smoother

x(k + 1) = Φ(k + 1, k)x(k) + Γ(k + 1, k)w(k) + Ψ(k + 1, k)u(k)

z(k) = H(k)x(k) + v(k), k = 0, 1, · · · .

▶ Closed-form smoother equations for linear Gaussian dynamic
and measurement models

▶ Look for smoothed distributions p(xk |z1:T ) = N (ms
k ,P

s
k).

▶ Consists of a forward pass and a backward pass
▶ Forward pass: the Kalman filter
▶ Backward pass: backward-running recursive predictor



RTS Smoother Algorithm adapted to the basic model

Forward pass: Perform the KF to obtain x̂(k|k), x̂(k |k − 1),
P(k |k − 1), and P(k |k), k = 1, · · · ,N.
Backward pass: for k = N − 1,N − 2, · · · , 0 as

x(k|N) = x̂(k|k) + A(k)[x̂(k + 1|N)− x̂(k + 1|k)]
A(k) = P(k |k)ΦT (k + 1, k)P−1(k + 1|k)

P(k|N) = P(k |k) + A(k)[P(k + 1|N)− P(k + 1|k)]AT (k).

▶ P(k|N):

▶ Availability of x̂(k|k), A(k), x̂(k + 1|N), x̂(k + 1|k),
P(k + 1|N), P(k |k), P(k + 1|k):



Example



Nonlinear filters and smoothers

▶ Practical applications involve nonlinear dynamic and
measurement models.

▶ Posterior distributions are no longer Gaussian even if the
added noise is Gaussian.

▶ A large class of nonlinear filters aim at approximating the
posterior distributions as Gaussian distributions
▶ Extended Kalman filter (EKF)
▶ Unscented Kalman filter (UKF)
▶ Gaussian filter, ...

▶ Another type of popular nonlinear filters is Particle filters
(PF), using a similar concept to MCMC.

▶ For each nonlinear filter, there is a corresponding nonlinear
smoother, e.g., EKS, Particle smoother.



Taylor series expansion in linearization

Consider x ∼ N (m,P) and y = g(x).

▶ p(y) = |J(y)|N (g−1(y)|m,P), where J(y) is the Jacobian
matrix of the inverse transform g−1(y).

▶ Except linear g , p(y) is difficult to obtain and handle.

First-order Taylor series expansion (linearization):

▶ Let x = m + δx , where δx ∼ N (0,P).

g(x) = g(m + δx) ≈ g(m) + Gx(m)δx + H.O.T .

Gx(m) is the Jacobian matrix of g(x) evaluated at x = m.



Expectation, covariance, joint distribution with
linearization



A General Case: Mean, covariance, joint distribution

x ∼ N (m,P),w ∼ N (0,Q), y = g(x , q)



Extended Kalman filter
• Key idea: linearization, assume Gaussian distributions for
posterior
• Generic model:

xk = f (xk−1, uk−1,wk−1), wk−1 ∼ N (0,Qk−1)

zk = h(xk , vk), vk ∼ N (0,Rk).

• Linearization

f (xk−1, uk−1,wk−1) ≈ f (mk−1, uk−1, 0) + Fx ,kδxk−1 + Fw ,kwk−1

h(xk , vk) ≈ h(mk , 0) + Hx ,kδxk + Hv ,kv(k)



EKF algorithm
Prediction:

Update:



Comments

▶ Advantage of EKF: simplicity compared to its performance.
▶ Disadvantages of EKF:

▶ Local linear approximation may not be sufficient for
considerable nonlinearity.

▶ Also not applicable to non-Gaussian distributions.
▶ Requires differentiable dynamics and measurement models.
▶ Computation of Jacobian matrices can be error prone.

▶ Despite all these disadvantages, its simplicity makes EKF a
first try and a common engineering approach to nonlinear
filtering.



Example



Gaussian filters

▶ Unify various Gaussian approximations to nonlinear
transforms: approximate computation of the expectation

Ex [g(x)] =

∫
g(x)N (x |m,P)dx .

▶ If we can compute the above integral, we can then match the
first/second order moments of the Gaussian approximation of
(x , y) to the true moments.



Moment matching for y = g(x ,w), x ∼ N (m,P),
w ∼ N (0,Q)

Approximate joint distribution of (x , y)(
x
y

)
∼ N

((
m
µM

)
,

(
P CM

CT
M SM

))



Gaussian filter
• Assume we can compute the integrals numerically and
p(xk |z1:k) = N (mk ,Pk).
• Generic model:

xk = f (xk−1, uk−1,wk−1), wk−1 ∼ N (0,Qk−1)

zk = h(xk , vk), vk ∼ N (0,Rk).

▶ Prediction:

▶ Update:



Computation of the integral

▶ Linearization leads to EKF

▶ Gauss-Hermite quadratures

▶ Cubature rules

▶ Unscented Transforms

▶ Bayes-Hermite quadrature

▶ Monte-Carlo integration


