Introduction to (Bayesian) Estimation MAE 5020

Models

Oklahoma State University

August 16, 2023

Introduction to the generic linear model

- ▶ To estimate unknown quantitie based on measurements and other given information, begin with a model representation
- \blacktriangleright Explicit relationship between the unknowns and the measurements
- ▶ Linear vs. nonlinear relationship
- ▶ Fundamental estimation problems in a generic linear model

$$
Z(k) = H(k)\theta + V(k)
$$

$$
\theta \in \mathbb{R}^{n \times 1} : Z(k) \in \mathbb{R}^{N \times 1} : H(k) \in \mathbb{R}^{N \times n} : V(k) \in \mathbb{R}^{N \times 1} :
$$

Categories

A. θ is deterministic

- 1. $H(k)$ is deterministic
- 2. $H(k)$ is random
	- a) $H(k)$ and $V(k)$ are statistically independent
	- b) $H(k)$ and $V(k)$ are statistically dependent
- B. θ is random
	- 1. $H(k)$ is deterministic
	- 2. $H(k)$ is random
		- a) $H(k)$ and $V(k)$ are statistically independent
		- b) $H(k)$ and $V(k)$ are statistically dependent

In the book, there are many examples. We will discuss a few that are important and instrumental.

KORKAR KERKER SAGA

Example 2-3: Function approximation

▶ Given $(x_1, f(x_1)), (x_2, f(x_2)), \cdots, (x_N, f(x_N)),$ where x_i 's are unknown but $f(\cdot)$ is unknown.

▶ Approxate $f(\cdot)$ in a linear form

$$
f(x) \approx \hat{f}(x) \triangleq \sum_{j=1}^{n} \theta_j \phi_j(x)
$$

The corresponding linear model

$$
\blacktriangleright \text{ Suppose } f_m(x_i) = f(x_i) + e(x_i).
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

The corresponding linear model

$$
\blacktriangleright \text{ Suppose } f_m(x_i) = f(x_i) + e(x_i).
$$

▶ Rewrite it in a vector form with $\hat{f}(\cdot)$.

▶ Final form in the generic linear model:

KO K K Ø K K E K K E K V K K K K K K K K K

Example 2-1: Finite impulse response (FIR) FIR Model (a.k.a Moving average model):

KORKARYKERKER POLO

- \blacktriangleright Moving average coefficients $h(i)$'s are unknown
- ▶ "signal-plus-noise" model in block diagram:

The corresponding linear model

 \blacktriangleright Rewrite it in a vector form

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Example 2-2: Finite difference equation

Autoregressive (AR) model:

$$
y(k) = -\alpha_1 y(k-1) - \alpha_2 y(k-2) - \cdots - \alpha_n y(k-n) + u(k-1)
$$

measurement

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

 \blacktriangleright Rewrite it in a vector form:

 \blacktriangleright The generic linear model:

Example 2-5: Nonlinear model

▶ Most of the developed techniques can be applied to nonlinear models (after linearization)

Suppose
$$
z(k) = f(\theta, k) + v(k)
$$
, $k = 1, \dots, N$.

- \blacktriangleright f : nonlinear function in θ , known explicitly.
- Nominal θ : θ^* , nominal $z^*(k) =$
- **•** Linearization: define $\delta z(k) =$, $\delta \theta =$
- ▶ Linearized equation:

The corresponding linear form

KOKK@KKEKKEK E 1990

Example (new): Neural network as a nonlinear model

A simple NN model^a.

^ahttps://studymachinelearning.com/mathematicsbehind-the-neural-network/

First layer:

$$
\begin{pmatrix} z_{11} \\ z_{12} \\ z_{13} \end{pmatrix} = \begin{pmatrix} w_{11} & w_{21} \\ w_{12} & w_{22} \\ w_{13} & w_{23} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} b_1 \\ b_1 \\ b_1 \end{pmatrix}
$$

 $Z^{[1]} = W^{[1]}X + b^{[1]}$

Activation function:

$$
\begin{pmatrix} a_{11} \\ a_{12} \\ a_{13} \end{pmatrix} = \begin{pmatrix} \sigma(a_{11}) \\ \sigma(a_{12}) \\ \sigma(a_{13}) \end{pmatrix}
$$

 ${\cal A}^{[1]}=\sigma(Z^{[1]})$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Example (new): Neural network as a nonlinear model

Second layer:

$$
(z_{21}) = (w_{31} \quad w_{41} \quad w_{51}) \begin{pmatrix} a_{11} \\ a_{12} \\ a_{13} \end{pmatrix} + b_2
$$

$$
Z^{[2]} = W^{[2]}A^{[1]} + b^{[2]}
$$

Activation function: $a_{21} = \sigma(z_{21}), A^{[2]} = \sigma(Z^{[2]}).$ Putting everything together:

$$
\begin{array}{l} A^{[2]}=\sigma(W^{[2]} \sigma(W^{[1]} X+b^{[1]})\!+\!b^{[2]})\\ \triangleq f(\theta, X) \end{array}
$$

KORKARYKERKER POLO

Example 2-4: dynamic systems and state estimation

- ▶ Dynamical systems are ubiquitous in control/robotics/communication, etc.
- ▶ Often we need to estimate the state vector in a dynamical system for controls, monitoring, etc.
- \blacktriangleright Typically we cannot measure all the state variables, e.g., position but not velocity, etc.
- ▶ State estimation: estimate the entire state vector given a limited collection of noisy measurements

Formulation

$$
x(k + 1) = \Phi x(k) + \gamma u(k)
$$

$$
z(k) = h^T x(k) + v(k)
$$

Collect N measurements:

Find a common θ by using the state equation. First, state solution:

Second, fix to a particular time k_1 :

The general linear form

Express measurements in terms of $x(k_1)$

 \blacktriangleright The linear form

Observations

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @