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Introduction to the generic linear model

▶ To estimate unknown quantitie based on measurements and
other given information, begin with a model representation

▶ Explicit relationship between the unknowns and the
measurements

▶ Linear vs. nonlinear relationship

▶ Fundamental estimation problems in a generic linear model

Z (k) = H(k)θ + V (k)

θ ∈ Rn×1 :
Z (k) ∈ RN×1 :
H(k) ∈ RN×n :
V (k) ∈ RN×1 :



Categories

A. θ is deterministic

1. H(k) is deterministic
2. H(k) is random

a) H(k) and V (k) are statistically independent
b) H(k) and V (k) are statistically dependent

B. θ is random

1. H(k) is deterministic
2. H(k) is random

a) H(k) and V (k) are statistically independent
b) H(k) and V (k) are statistically dependent

In the book, there are many examples. We will discuss a few that
are important and instrumental.



Example 2-3: Function approximation

▶ Given (x1, f (x1)), (x2, f (x2)), · · · , (xN , f (xN)), where xi ’s are
unknown but f (·) is unknown.

▶ Approxate f (·) in a linear form

f (x) ≈ f̂ (x) ≜
n∑

j=1

θjϕj(x)

▶ ϕj(x):

▶ Examples:



The corresponding linear model
▶ Suppose fm(xi ) = f (xi ) + e(xi ).

▶ Rewrite it in a vector form with f̂ (·).

▶ Final form in the generic linear model:

▶ Category:



The corresponding linear model
▶ Suppose fm(xi ) = f (xi ) + e(xi ).

▶ Rewrite it in a vector form with f̂ (·).

▶ Final form in the generic linear model:

▶ Category:



Example 2-1: Finite impulse response (FIR)
FIR Model (a.k.a Moving average model):

y(k)︸︷︷︸
output

=
n∑

i=1

h(i) u(k − i)︸ ︷︷ ︸
input

z(k) = y(k) + v(k)

▶ Moving average coefficients h(i)’s are unknown

▶ “signal-plus-noise” model in block diagram:



The corresponding linear model
▶ Rewrite it in a vector form

▶ The generic linear model

▶ Category:



Example 2-2: Finite difference equation
Autoregressive (AR) model:

y(k)
measurement

= −α1y(k − 1)− α2y(k − 2)− · · · − αny(k − n) + u(k − 1)

▶ Rewrite it in a vector form:

▶ The generic linear model:

▶ Category



Example 2-5: Nonlinear model

▶ Most of the developed techniques can be applied to nonlinear
models (after linearization)

▶ Suppose z(k) = f (θ, k) + v(k), k = 1, · · · ,N.

▶ f : nonlinear function in θ, known explicitly.

▶ Nominal θ: θ∗, nominal z∗(k) =

▶ Linearization: define δz(k) = , δθ =

▶ Linearized equation:



The corresponding linear form



Example (new): Neural network as a nonlinear model

A simple NN model a.

ahttps://studymachinelearning.com/mathematics-
behind-the-neural-network/

First layer:z11
z12
z13

 =

w11 w21

w12 w22

w13 w23

(
x1
x2

)
+

b1
b1
b1


Z [1] = W [1]X + b[1]

Activation function:a11
a12
a13

 =

σ(a11)
σ(a12)
σ(a13)


A[1] = σ(Z [1])



Example (new): Neural network as a nonlinear model

A simple NN model.

Second layer:

(
z21

)
=

(
w31 w41 w51

)a11
a12
a13

+b2

Z [2] = W [2]A[1] + b[2]

Activation function:
a21 = σ(z21), A

[2] = σ(Z [2]).
Putting everything together:

A[2] = σ(W [2]σ(W [1]X+b[1])+b[2])

≜ f (θ,X )



Example 2-4: dynamic systems and state estimation

▶ Dynamical systems are ubiquitous in
control/robotics/communication, etc.

▶ Often we need to estimate the state vector in a dynamical
system for controls, monitoring, etc.

▶ Typically we cannot measure all the state variables, e.g.,
position but not velocity, etc.

▶ State estimation: estimate the entire state vector given a
limited collection of noisy measurements



Formulation

x(k + 1) = Φx(k) + γu(k)

z(k) = hT x(k) + v(k)

Collect N measurements:

Find a common θ by using the state equation. First, state solution:

Second, fix to a particular time k1:



The general linear form

▶ Express measurements in terms of x(k1)

▶ The linear form



Observations


