Introduction to (Bayesian) Estimation MAE 5020

Least-squares estimation

Oklahoma State University

August 14, 2023

Notation

- $\hat{\theta}(k):$ $\hat{\theta}(k):$
- $\triangleright \hat{x}(k_1|N):$
- Three situations:

Predicted measurements:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Prediction error:

Least-squares estimation (Batch process)

Consider *N* measurements: $Z(k) = H(k)\theta + V(k)$, $\theta \in \mathbb{R}^n$ In the expanded form:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

N < *n*:

N = n:

N > *n*:

LSE solution strategy

Define prediction error

Find $\hat{\theta}(k)$ that minimizes

 $J(\hat{\theta}(k)) =$

Derivation

Expand $J(\hat{\theta}(k))$ and take its derivative w.r.t. $\hat{\theta}(k)$.

◆□ ▶ < @ ▶ < E ▶ < E ▶ E 9000</p>

Comments

$\blacktriangleright H^{T}(k)W(k)H(k):$

Comments

Orthogonality condition:

Example: sample mean is a LSE

Example: simplified pitch dynamics

$$\ddot{\theta}(t) = M_{\alpha} \underbrace{\alpha(t)}_{AOA} + M_{\delta} \underbrace{\delta(t)}_{\text{control surface deflection}}$$
• Measurements: $\ddot{\theta}_{M}(k) = M_{\alpha}\alpha(k) + M_{\delta}\delta(k) + v_{\ddot{\theta}}(k)$
• LSE:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Final comments

LS estimates may not invariant under changes of scale (units).

Least-squares estimation (Recursive process)

▶ Batch process of *N* measurements to estimate $\theta \in \mathbb{R}^n$ is not efficient when

Information form: Derivation

Suppose we have a new measurement at t_{k+1} given by

$$z(k+1) = h^T(k+1)\theta + v(k+1).$$

Total measurements including previous measurements up to k

$$Z(k+1) = H(k+1)\theta + V(k+1)$$

where

$$Z(k+1) = \begin{pmatrix} & \\ & \end{pmatrix}, \ H(k+1) = \begin{pmatrix} & \\ & \end{pmatrix}, \ V(k+1) = \begin{pmatrix} & \\ & \end{pmatrix}$$

Objective: Write $\hat{\theta}_{WLSE}(k+1)$ in terms of $\hat{\theta}_{WLSE}(k)$ and the new measurement z(k+1).

Step 1: $\hat{\theta}_{WLSE}(k+1)$

• $\hat{\theta}_{WLSE}(k+1)$ is given by

Substituting W(k+1) and computing $H^{T}(k+1)W(k+1)Z(k+1)$ as

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Step 2: $\hat{\theta}_{WLSE}(k)$

•
$$\hat{\theta}_{WLSE}(k)$$
 is given by

► 1):
$$P(k)^{-1}\hat{\theta}_{WLSE}(k) = H^T(k)W(k)Z(k)$$

► 2):
$$P(k+1)^{-1} = (H^T(k+1)W(k+1)H(k+1)) = P(k)^{-1} + h(k+1)w(k+1)h^T(k+1)$$

Step 3: recursive form using step 1 and step 2

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ○ ○ ○ ○

Observations

• $h^T(k+1)\hat{\theta}_{WLSE}(k)$ is a prediction of z(k+1) based on information up to k.

Additional form:

Computational order of two recursions:

Observations

Matrix inversion lemma:

• On computing P(k+1) using 2) for scalar case.

Covariance form

Comments

- Similar to Kalman filter equations. Will disucss later.
- Computation order:

- Initilization remains the same as the information form.
- Equivalence between the covariance and the information form:

Example: recursive form for sample mean estimation

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●