# Introduction to (Bayesian) Estimation MAE 5020

Nonlinear Least-squares estimation<sup>1</sup>

Oklahoma State University

August 16, 2023

<sup>&</sup>lt;sup>1</sup>adapted from

# Nonlinear Least-squares estimation (NLSE)

Consider N measurements:  $Z(k) = F(\theta, k) + V(k), \ \theta \in \mathbb{R}^n$ 

Find  $\hat{\theta}(k)$  that minimizes (unweighted W = I)

$$J(\hat{\theta}(k)) = ||Z(k) - F(\hat{\theta}(k), k)||^2$$

Expanded form:

$$||Z(k) - F(\hat{\theta}(k), k)||^2 = \sum_{i=1}^{k} ||z(i) - F_i(\hat{\theta}(k))||^2$$

▶ Define  $f_i(\hat{\theta}) = z(i) - F_i(\hat{\theta})$  and rewrite

$$J(\hat{\theta}(k)) = \sum_{i=1}^{k} \|f_i(\hat{\theta}(k))\|^2 = \|f(\hat{\theta}(k))\|^2$$

## **Definitions**

- ▶  $F_i(\theta)$ ,  $i = 1, \dots, k$ , are differentiable functions of a vector  $\theta \in \mathbb{R}^n$
- ▶  $f(\theta)$  is a function with components  $f_i(\theta)$ :

▶ Linear least squares when  $f(\theta) = H\theta - Z$ .

# Applications of NLSE: Localization from range measurements

- $\blacktriangleright$   $\theta$  represent an unknown location in 2-D or 3-D
- ▶ Distance to known points  $a_1, \dots, a_k$  is measured:

$$r_i = \|\theta - a_i\| + v_i, \quad i = 1, \cdots, k$$

NLSE: estimate  $\theta$  by  $\hat{\theta}$  that minimizes

$$J(\hat{\theta}) = \sum_{i=1}^k (\|\theta - a_i\| - r_i)^2$$

# Example



- ightharpoonup True location (1,1) marked in red
- ► Five points marked in blue

# Application: Model fitting

$$\min_{\theta} \sum_{i=1}^{k} \|z(i) - F(x(i), \theta)\|^{2}$$

- A nonlinear model  $F(x(i), \theta)$  (e.g., a NN) parameterized by  $\theta$  (e.g., weights, biases)
- ▶ Data points  $(x(1), z(1)), \dots, (x(k), z(k))$
- Loss function in ML: mean square loss
- ▶ Recall the linear model fitting example:  $F(x, \theta) = \sum_i \theta_i f_i(x)$
- ▶ We now allow *F* to be nonlinear

### Illustration

### Second order system response

$$F(x,\theta) = \theta_1 e^{\theta_2 x} \cos(\theta_3 x + \theta_4)$$



$$\min \sum_{i=1}^{k} (\theta_1 e^{\theta_2 x(i)} \cos(\theta_3 x(i) + \theta_4) - z(i))^2$$

## Derivatives/Gradient

Gradient of a differentiable function  $g:\mathbb{R}^n \to \mathbb{R}$  at  $z \in \mathbb{R}^n$  is a column vector

$$\nabla g(z) =$$

Linearization around z allows approximation of  $g(\cdot)$ 

$$g(x) \approx \hat{g}(x) = g(z) + \frac{\partial g}{\partial x_1}(z)(x - z_1) +$$
=

## Jacobian matrix

Jacobian of a differentiable function  $f: \mathbb{R}^n \to \mathbb{R}^k$  at  $z \in \mathbb{R}^n$ :

$$Df(z) = \frac{\partial f(x)}{x}(z) = \begin{pmatrix} \frac{\partial f_1(x)}{x_1}(z) & \cdots & \frac{\partial f_1(x)}{x_n}(z) \\ \vdots & & \vdots \\ \frac{\partial f_k(x)}{x_1}(z) & \cdots & \frac{\partial f_k(x)}{x_n}(z) \end{pmatrix} = \begin{pmatrix} \nabla f_1(z)^T \\ \vdots \\ \nabla f_k(z)^T \end{pmatrix}$$

Linearization leads to approximation:

$$f(x) \approx \hat{f}(x) = f(z) + Df(z)(x - z)$$

# Gradient of $J(\hat{\theta})$

$$J(\hat{\theta}) = \sum_{i=1}^{k} \|f_i(\hat{\theta})\|^2 = \|f(\hat{\theta})\|^2 \triangleq g(\hat{\theta})$$

▶ Derivative of g w.r.t.  $\hat{\theta}_j$  (assume  $f_i(\hat{\theta})$  is a scalar):

$$\frac{\partial g}{\partial \hat{\theta}_j} = 2 \sum_{i=1}^k f_i(\hat{\theta}) \frac{\partial f_i}{\partial \hat{\theta}_j}$$

• Gradient of g at  $\hat{\theta}$ 

$$\nabla g(\hat{\theta}) = \begin{pmatrix} \frac{\partial g}{\partial \hat{\theta}_1} \\ \vdots \\ \frac{\partial g}{\partial \hat{\theta}_n} \end{pmatrix} = 2 \sum_{i=1}^k f_i(\hat{\theta}) \nabla f_i(\hat{\theta}) = 2 D f(\hat{\theta})^T f(\hat{\theta})$$

## Necessary optimality condition

$$\min g(\hat{\theta}) = \sum_{i=1}^k \|f_i(\hat{\theta})\|^2 = \|\mathbf{f}(\hat{\theta})\|^2$$

Necessary condition: if  $\hat{\theta}$  minimizes  $g(\hat{\theta})$ , it must satisfy

$$\nabla g(\hat{\theta}) = 2Df(\hat{\theta})^T f(\hat{\theta}) = 0$$

► For the linear case, where  $f(\hat{\theta}) = H\hat{\theta} - Z$ , we have

$$\nabla g(\hat{\theta}) =$$

► For general nonlinear *f*, this condition is only necessary, not sufficient for optimality.



# Algorithms to find possible $\hat{\theta}$

Gradient descent

Gauss-Newton method

Levenberg-Marquardt method

# Gauss-Newton algorithm

$$\min g(\hat{\theta}) = \sum_{i=1}^{k} \|f_i(\hat{\theta})\|^2 = \|f(\hat{\theta})\|^2$$

Start with some initial guess  $\hat{\theta}^{(1)}$ , and repeat for  $\ell=1,2,\cdots$ :

1. Linearize  $f(\hat{\theta})$  around  $\hat{\theta}^{(\ell)}$ :

$$\hat{f}(\hat{\theta}, \hat{\theta}^{(\ell)}) = f(\hat{\theta}^{(\ell)}) + Df(\hat{\theta}^{(\ell)})(\hat{\theta} - \hat{\theta}^{(\ell)})$$

- 2. Use  $\hat{f}(\hat{\theta}, \hat{\theta}^{(\ell)})$  as an approximation to  $f(\hat{\theta})$  and minimize  $\|\hat{f}(\hat{\theta}, \hat{\theta}^{(\ell)})\|^2$
- 3. Set  $\hat{\theta}^{(\ell+1)}$  to the solution from Step 2

## Step 2

$$\min \|f(\hat{\theta}^{(\ell)}) + Df(\hat{\theta}^{(\ell)})(\hat{\theta} - \hat{\theta}^{(\ell)})\|^2$$

- Given  $\hat{\theta}^{(\ell)}$ , this is a linear LSE problem.
- ▶ If  $Df(\hat{\theta}^{(\ell)})$  has linearly independent columns,

$$\hat{\theta}^{(\ell+1)} = \hat{\theta}^{(\ell)} - \left( Df(\hat{\theta}^{(\ell)})^T Df(\hat{\theta}^{(\ell)}) \right)^{-1} Df(\hat{\theta}^{(\ell)})^T f(\hat{\theta}^{(\ell)})$$

 $ightharpoonup \Delta x^{\ell}$  is the same as  $-\frac{1}{2} \left( Df(\hat{\theta}^{(\ell)})^T Df(\hat{\theta}^{(\ell)}) \right)^{-1} \nabla g(\hat{\theta}^{(\ell)})$ 



# What if columns of $Df(\hat{\theta}^{(\ell)})$ are linearly dependent?

$$\hat{\theta}^{(\ell+1)} = \hat{\theta}^{(\ell)} - \left( Df(\hat{\theta}^{(\ell)})^T Df(\hat{\theta}^{(\ell)}) + \lambda^{(\ell)} I \right)^{-1} Df(\hat{\theta}^{(\ell)})^T f(\hat{\theta}^{(\ell)})$$

- ightharpoonup Levenberg-Marquardt update:  $\lambda$  is a regularization parameter
- ▶ Strategies to update  $\lambda^{\ell}$  are possible.
- ► Trust-region: min  $\|\hat{f}(\hat{\theta}, \hat{\theta}^{(\ell)})\|^2$  subject to  $\|\hat{\theta} \hat{\theta}^{(\ell)}\| < \gamma$ .

## LM method

Start with some initial guess  $\hat{\theta}^{(1)}$  and  $\lambda^{(\ell)}$ , and repeat for  $\ell=1,2,\cdots$  :

- 1. Evaluate  $f(\hat{\theta}^{(\ell)})$  and set  $H = Df(\hat{\theta}^{(\ell)})$
- 2. Compute

$$\hat{\Theta} = \hat{\theta}^{(\ell)} - (H^T H + \lambda^{(\ell)} I)^{-1} H^T f(\hat{\theta}^{(\ell)})$$

3. Set  $\hat{\theta}^{(\ell+1)}$  and  $\lambda^{(\ell+1)}$  as follows

$$\begin{cases} \hat{\theta}^{(\ell+1)} = \hat{\Theta}, \lambda^{(k+1)} = \beta_1 \lambda^{(k)} & \text{if } ||f(\hat{\Theta})||^2 \le ||f(\hat{\theta}^{(\ell)})||^2 \\ \hat{\theta}^{(\ell+1)} = \hat{\theta}^{(\ell)}, \lambda^{(k+1)} = \beta_2 \lambda^{(k)} & \text{otherwise} \end{cases}$$

- $ightharpoonup eta_1,\ eta_2$  are constants  $0<eta_1<1<eta_2$
- ► Terminate if  $\nabla g(\hat{\theta}^{(\ell)}) = 2H^T f(\hat{\theta}^{(\ell)})$  is small



## Example: localization from range measurements



$$\lambda^{(1)}=0.1$$
,  $\beta_1=0.8$ ,  $\beta_2=2$ 

# Model fitting using NN



A simple NN model.

### First layer:

$$W^{[1]} = egin{pmatrix} w_{11} & w_{21} \ w_{12} & w_{22} \ w_{13} & w_{23} \end{pmatrix} \quad b^{[1]} = egin{pmatrix} b_1 \ b_1 \ b_1 \end{pmatrix}$$

#### Second layer:

$$W^{[2]} = \begin{pmatrix} w_{31} & w_{41} & w_{51} \end{pmatrix} \quad b^{[2]} = b_2$$

$$a_{21} = \sigma(W^{[2]}\underbrace{\sigma(W^{[1]}X + b^{[1]})}_{A^{[1]}} + b^{[2]})$$

$$\triangleq f(\theta, X)$$

 $\theta$ : all the weights and biases



# Backpropagation as gradient

We have data  $(X(1), z(1)), \dots, (X(k), z(k))$ . Estimate  $\theta$  to minimize  $\sum_{i=1}^{k} (z(i) - f(\theta, X(i)))^2$ .

- ► A NLSE problem.
- ▶ Requires  $\nabla_{\theta} f(\theta, X)$

Example:  $\frac{\partial f(\theta, X)}{\partial w_{12}}$ 

## Backpropagation

$$\frac{\partial f(\theta, X)}{\partial w_{12}} = \frac{\partial \sigma(Z^{[2]})}{\partial Z^{[2]}} \frac{\partial Z^{[2]}}{\partial A^{[1]}} \frac{\partial A^{[1]}}{\partial Z^{[1]}} \frac{\partial Z^{[1]}}{\partial w_{12}}$$

Each partial derivative can be easily computed.