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Core question:

How do we know whether the results from LSE or any estimator is
good?

▶ Recall all estimators represent transformation of random data,
which means that the estimate θ̂(k) is random.

▶ We can study its properties from a statistical point of view.



Small-sample vs. large-sample properties

▶ Sample:

▶ Small sample:

▶ Large sample:

Relationship between small-sample and large-sample properties:



Properties

▶ Small-sample: unbiasedness and efficiency

▶ Large-sample: asymptotic unbiasedness, consistency,
asymptotic normality, asymptotic efficiency



Unbiased

Property 1: Unbiased estimator Estimator θ̂(k) is an unbiased
estimator of deterministic θ if E (θ̂(k)) = θ, or of random θ if
E (θ̂(k)) = E (θ).

Example

Sample mean



Structure 1
Many estimators are of the form Structure 1:

θ̂(k) = F (k)Z (k)

When is it unbiased?
Fact: If Z (k) = H(k)θ + V (K ), E (V (K )) = 0, and H(k) and
F (k) are deterministic, then structure 1 is an unbiased estimator if
F (k)H(k) = I , ∀k . Why?



Example: WLSE



Structure 2

Many recursive estimators are of the form Structure 2:

θ̂(k + 1) = A(k + 1)θ̂(k) + b(k + 1)z(k + 1).

Fact: If z(k + 1) = hT (k + 1)θ + v(K + 1), E (v(k + 1)) = 0,
E (θ̂(k + 1)) = E (θ̂(k)) for any k , and h(k + 1) is deterministic,
then structure 2 is an unbiased estimator if
A(k + 1) = I − b(k + 1)hT (k + 1), where A(k + 1) and b(k + 1)
are deterministic.



Implications

▶ A(k + 1) and b(k + 1) are

▶ Another form of Structure 2



Efficiency
▶ The second order statistics of an estimator is important to

understand the variation of the estimates produced by the
estimator, provided that it is already unbiased.

Property 2: efficiency An unbiased estimator θ̂(k) of a vector θ

is said to be more efficient than other unbiased estimators ˆ̂
θ(k) if

E{[θ − θ̂(k)]︸ ︷︷ ︸
θ̃(k)

[θ − θ̂(k)]T} ≤ E{[θ − ˆ̂
θ(k)][θ − ˆ̂

θ(k)]T}. (1)

▶ When θ is a scalar,

▶ A more efficient unbiased estimator produces



Cramer-Rao lower bound

Let Z denote the dataset available to estimate θ and θ̂(k) be any
unbiased estimator of deterministic θ based on Z . Then

E{θ̃(k)θ̃(k)} ≥ J−1, (2)

where J is the “Fisher information matrix”

J = E{[ ∂
∂θ

log p(Z )][
∂

∂θ
log p(Z )]T} = −E{[ ∂

2

∂θ2
log p(Z )]}. (3)

The equality holds if and only if ∂
∂θ log p(Z ) = c(θ)θ̃(k), where

C (θ) is a matrix that does not depend on Z .



Comments

▶ The vector derivative must exist and the norm of ∂p(Z )/∂θ
must be absolutely integrable (needed in the proof).

▶ J−1 is called the Cramer Rao lower bound (CRLB). There are
other lower bounds that can be tighter, e.g., Bhattacharyya
bound, but they are even more difficult to compute than J−1.

▶ For individual element of θ, we have E{θ̃2i (k)} ≥ J−1
ii .



Comments
▶ Whether the CRLB is achieved or not depends on the

estimator. The BLUE (best linear unbiased estimator)
achieves the CRLB by design. Under certain conditions, a LSE
is also efficient.

▶ p(Z ) is the probability density function of Z that depends on
θ. It is characterized by a pdf pθ(Z ).

▶ Example of a Gaussian distribution



Example: computation of J(θ) in Gaussian setting



Small-sample properties of LSE
Recall when H(k) is deterministic, WLSE is unbiased

When H(k) is random

θ̂WLS(k) = [H(k)TW (k)H(k)]−1HT (k)W (k)Z (k) is unbiased if
V (k) is zero mean and if V (k) and H(k) are statistically
independent.

Proof:



Example: parameter estimation in a first-order system



Covariance of LSE

Covariance: If V (k) is zero mean, if V (k) and H(k) are
statistically independent and if E (V (k)V (k)T ) = R(k) (i.e., the
covariance of V (k) is R(k) since V (k) is zero mean), then

cov(θ̃WLS(k)) =

When H(k) is deterministic, W (k) = I and R(k) = σ2
v I ,



Proof



Efficiency of LSE

If V (k) is zero mean, H(k) is deterministic, and the components
of V (k) are independent and identically distributed with a
constant covariance σ2

v , i.e., R(k) = σ2
v I , then θ̂LS(k) is an

efficient estimator within the class of linear estimators.



Proof

Because we don’t know p(Z ), we cannot compute CRLB. We will
show that θ̂LS(k) is more efficient than any other linear estimator.


