Introduction to (Bayesian) Estimation MAE 5020

Small-sample properties of estimators

Oklahoma State University

May 31, 2024

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

How do we know whether the results from LSE or any estimator is good?

Recall all estimators represent transformation of random data, which means that the estimate $\hat{\theta}(k)$ is random.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

▶ We can study its properties from a statistical point of view.

Small-sample vs. large-sample properties

- Sample:
- Small sample:
- Large sample:

Relationship between small-sample and large-sample properties:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Properties

- Small-sample: unbiasedness and efficiency
- Large-sample: asymptotic unbiasedness, consistency, asymptotic normality, asymptotic efficiency

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Unbiased

Property 1: Unbiased estimator Estimator $\hat{\theta}(k)$ is an unbiased estimator of deterministic θ if $E(\hat{\theta}(k)) = \theta$, or of random θ if $E(\hat{\theta}(k)) = E(\theta)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Example

Sample mean

Structure 1

Many estimators are of the form Structure 1:

$$\hat{\theta}(k) = F(k)Z(k)$$

When is it unbiased?

Fact: If $Z(k) = H(k)\theta + V(K)$, E(V(K)) = 0, and H(k) and F(k) are deterministic, then structure 1 is an unbiased estimator if F(k)H(k) = I, $\forall k$. Why?

Example: WLSE

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

Structure 2

Many recursive estimators are of the form Structure 2:

$$\hat{ heta}(k+1)=A(k+1)\hat{ heta}(k)+b(k+1)z(k+1).$$

Fact: If $z(k+1) = h^T(k+1)\theta + v(K+1)$, E(v(k+1)) = 0, $E(\hat{\theta}(k+1)) = E(\hat{\theta}(k))$ for any k, and h(k+1) is deterministic, then structure 2 is an unbiased estimator if $A(k+1) = I - b(k+1)h^T(k+1)$, where A(k+1) and b(k+1) are deterministic.

Implications

•
$$A(k+1)$$
 and $b(k+1)$ are

► Another form of *Structure 2*

Efficiency

The second order statistics of an estimator is important to understand the variation of the estimates produced by the estimator, provided that it is already unbiased.

Property 2: efficiency An unbiased estimator $\hat{\theta}(k)$ of a vector θ is said to be more efficient than other unbiased estimators $\hat{\hat{\theta}}(k)$ if

$$\mathsf{E}\{\underbrace{[\theta-\hat{\theta}(k)]}_{\tilde{\theta}(k)}[\theta-\hat{\theta}(k)]^{\mathsf{T}}\} \leq \mathsf{E}\{[\theta-\hat{\hat{\theta}}(k)][\theta-\hat{\hat{\theta}}(k)]^{\mathsf{T}}\}.$$
(1)

• When θ is a scalar,

A more efficient unbiased estimator produces

Cramer-Rao lower bound

Let Z denote the dataset available to estimate θ and $\hat{\theta}(k)$ be any unbiased estimator of deterministic θ based on Z. Then

$$E\{\tilde{\theta}(k)\tilde{\theta}(k)\} \ge J^{-1},\tag{2}$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

where J is the "Fisher information matrix"

$$J = E\{\left[\frac{\partial}{\partial\theta}\log p(Z)\right]\left[\frac{\partial}{\partial\theta}\log p(Z)\right]^{T}\} = -E\{\left[\frac{\partial^{2}}{\partial\theta^{2}}\log p(Z)\right]\}.$$
 (3)

The equality holds if and only if $\frac{\partial}{\partial \theta} \log p(Z) = c(\theta) \tilde{\theta}(k)$, where $C(\theta)$ is a matrix that does not depend on Z.

Comments

- The vector derivative must exist and the norm of ∂p(Z)/∂θ must be absolutely integrable (needed in the proof).
- ► J⁻¹ is called the Cramer Rao lower bound (CRLB). There are other lower bounds that can be tighter, e.g., Bhattacharyya bound, but they are even more difficult to compute than J⁻¹.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

For individual element of θ , we have $E\{\tilde{\theta}_i^2(k)\} \ge J_{ii}^{-1}$.

Comments

- Whether the CRLB is achieved or not depends on the estimator. The BLUE (best linear unbiased estimator) achieves the CRLB by design. Under certain conditions, a LSE is also efficient.
- ▶ p(Z) is the probability density function of Z that depends on θ . It is characterized by a pdf $p_{\theta}(Z)$.

Example of a Gaussian distribution

Example: computation of $J(\theta)$ in Gaussian setting

Small-sample properties of LSE

Recall when H(k) is deterministic, WLSE is unbiased

When H(k) is random

 $\hat{\theta}_{WLS}(k) = [H(k)^T W(k) H(k)]^{-1} H^T(k) W(k) Z(k)$ is unbiased if V(k) is zero mean and if V(k) and H(k) are statistically independent.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Proof:

Example: parameter estimation in a first-order system

<ロト < 回 ト < 三 ト < 三 ト 三 の < ()</p>

Covariance of LSE

Covariance: If V(k) is zero mean, if V(k) and H(k) are statistically independent and if $E(V(k)V(k)^T) = R(k)$ (i.e., the covariance of V(k) is R(k) since V(k) is zero mean), then

 $cov(ilde{ heta}_{WLS}(k)) =$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

When H(k) is deterministic, W(k) = I and $R(k) = \sigma_v^2 I$,

Proof

・ロト・個ト・モト・モー うへの

If V(k) is zero mean, H(k) is deterministic, and the components of V(k) are independent and identically distributed with a constant covariance σ_v^2 , i.e., $R(k) = \sigma_v^2 I$, then $\hat{\theta}_{LS}(k)$ is an efficient estimator within the class of linear estimators.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Proof

Because we don't know p(Z), we cannot compute CRLB. We will show that $\hat{\theta}_{LS}(k)$ is more efficient than any other linear estimator.