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Core question:

How do we know whether the results from LSE or any estimator is
good?
» Recall all estimators represent transformation of random data,
which means that the estimate (k) is random.

> We can study its properties from a statistical point of view.



Small-sample vs. large-sample properties

» Sample:
» Small sample:

> Large sample:

Relationship between small-sample and large-sample properties:



Properties

» Small-sample: unbiasedness and efficiency

P Large-sample: asymptotic unbiasedness, consistency,
asymptotic normality, asymptotic efficiency



Unbiased

Property 1: Unbiased estimator Estimator 0(k) is an unbiased
estimator of deterministic ¢ if E£(6(k)) = 6, or of random 6 if
E(0(k)) = E(9).

Example

Sample mean



Structure 1
Many estimators are of the form Structure 1:
O(k) = F(K)Z(k)
When is it unbiased?

Fact: If Z(k) = H(k)0 + V(K), E(V(K)) =0, and H(k) and
F(k) are deterministic, then structure 1 is an unbiased estimator if
F(k)H(k) =1, Yk. Why?



Example: WLSE



Structure 2
Many recursive estimators are of the form Structure 2:
O(k +1) = A(k + 1)0(k) + b(k + 1)z(k +1).

Fact: If z(k +1)=h"(k+1)0 + v(K + 1), E(v(k + 1)) =0,
E(O(k + 1)) = E(A(k)) for any k, and h(k + 1) is deterministic,
then structure 2 is an unbiased estimator if

A(k+1) =1 — b(k+1)hT(k + 1), where A(k + 1) and b(k + 1)
are deterministic.



Implications

» A(k+1) and b(k + 1) are

» Another form of Structure 2



Efficiency

» The second order statistics of an estimator is important to
understand the variation of the estimates produced by the
estimator, provided that it is already unbiased.

Property 2: efficiency An unbiased estimator O(k) of a vector

is said to be more efficient than other unbiased estimators f(k) if

E{[0 — B(k)]16 — 0N T} < E{[0 — 6k)I0— 01T} (1)

(k)

» When 6 is a scalar,

> A more efficient unbiased estimator produces



Cramer-Rao lower bound

Let Z denote the dataset available to estimate ¢ and 9(/() be any
unbiased estimator of deterministic 6 based on Z. Then

E{O(k)0(k)} = I, (2)
where J is the “Fisher information matrix”
0 0 T 02
J = E{l5; log p( D)5 10g P2 T} = ~E{l 55 log ()]} (3)

The equality holds if and only if % log p(Z) = c(0)0(k), where
C(0) is a matrix that does not depend on Z.



Comments

» The vector derivative must exist and the norm of dp(Z)/00
must be absolutely integrable (needed in the proof).

» J~1is called the Cramer Rao lower bound (CRLB). There are
other lower bounds that can be tighter, e.g., Bhattacharyya
bound, but they are even more difficult to compute than J~1.

» For individual element of 6, we have E{H?(k)} > thl.



Comments

» Whether the CRLB is achieved or not depends on the
estimator. The BLUE (best linear unbiased estimator)
achieves the CRLB by design. Under certain conditions, a LSE
is also efficient.

» p(Z) is the probability density function of Z that depends on
6. It is characterized by a pdf py(Z).

» Example of a Gaussian distribution



Example: computation of J(6) in Gaussian setting



Small-sample properties of LSE
Recall when H(k) is deterministic, WLSE is unbiased

When H(k) is random

Owis(k) = [H(k)TW(k)H(k)]"*HT (k)W(k)Z(k) is unbiased if
V/(k) is zero mean and if V/(k) and H(k) are statistically
independent.

Proof:



Example: parameter estimation in a first-order system



Covariance of LSE

Covariance: If V/(k) is zero mean, if V(k) and H(k) are
statistically independent and if E(V/(k)V(k)T) = R(k) (i.e., the
covariance of V/(k) is R(k) since V(k) is zero mean), then

COV(éWLs(k)) =

When H(k) is deterministic, W(k) = I and R(k) = o2,



Proof



Efficiency of LSE

If V(k) is zero mean, H(k) is deterministic, and the components
of V(k) are independent and identically distributed with a
constant covariance o2, i.e., R(k) = o2/, then 6, s(k) is an
efficient estimator within the class of linear estimators.



Proof

Because we don't know p(Z), we cannot compute CRLB. We will
show that 6;s(k) is more efficient than any other linear estimator.



