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Overview

Objective: Design an unbiased and efficient linear estimator, i.e.,
best linear unbiased estimator (BLUE)

▶ WLSE is not always unbiased or efficient.

▶ Assumptions: 1) H(k) is deterministic; 2) V (k) is zero mean
with a PD covariance matrix R(k).

▶ Design is more complicated but analysis is easier.

Connection
The BLUE of θ is a special case of WLSE where W (k) = R(k)−1.
P(k) in the recursive WLSE is the covariance matrix for the error
between θ and θ̂BLU(k) in BLUE.

Property

BLUEs are invariant under changes of scales!



Problem

Given Z (k) = H(k)θ + V (k),

▶ Assumption 1:

▶ Assumption 2:

▶ Linear estimator:

Design F (k) such that

1. θ̂BLU(k) is unbiased

2. The error variance of each element of θ̂BLU(k) is minimized.



Solution methodology (sketch)

1. Create constraints on F (k) to ensure unbiasedness of
θ̂BLU(k).

2. Express the variance E ([θi − θ̂i ,BLU(k)]
2) in terms of F (k).

Here the covariance of V (k) is used.

3. Minimize the variance in Step 2 with the constraints in Step 1
using Lagrange multipliers.



The derived BLUE and its properties

θ̂BLU(k) = (HT (k)R−1(k)H(k))
−1

HT (k)R−1(k)Z (k).

▶ The BLUE is a special case of WLSE with W (k) = R−1(k). If
R(k) = σ2

v I , θ̂BLU = θ̂LS .

▶ Most efficient unbiased estimators that are linear in the
measurements Z (k) given the linear form of the measurement.

▶ cov(θ̃BLU(k)) = (HT (k)R−1(k)H(k))
−1

, which is the P(k)
used in the recursive WLSE.

▶ The recursive form is the same as recursive WLSE, where
w−1(k + 1) is replaced with R(k + 1).



Invariance to scale changes

θ̂BLU(k) is invariant under changes of scale.

Proof: Observers A and B read the measurements of the same
process in two different scales, related by M.

ZB(k) = HB(k)θ + VB(k) = MZA(k) = M(HA(k)θ + VA(k))



Proof
Let θ̂A,BLU(k) and θ̂B,BLU(k) denote the BLUEs associated with

observers A and B. Show θ̂A,BLU(k) = θ̂B,BLU(k). The BLUE

algorithm automatically normalizes the data.



Final conclusion

▶ R(k) is known and H(k) is deterministic, use θ̂BLUE (k).

▶ R(k) is known and H(k) is random, use θ̂WLS(k) with
W (k) = R−1(k).

▶ R(k) is unknown: use θ̂WLS(k) with heuristic W (k).



Likelihood

▶ Probability is associated with a forward experiment/model:

▶ Likelihood is associated with an inverse model:



Hypothesis H

Suppose that θ can be only 0 or 1, then there are two hypotheses
associated with θ, H0 : θ = 0 and H1 : θ = 1, i.e., binary
hypothesis.

▶ Extend to θ taking discrete values, say 10 values.

▶ Extend to θ taking values within an interval a ≤ θ ≤ b:

▶ A vector of parameters, say θ ∈ Rn×1 and each element takes
2 values.



Null hypothesis

All other possibilities that are not already accounted for by the
enumerated hypotheses.

Example



Results (of an experiment)

Results are outputs/data of an experiment.

Example

In the linear model Z (k) = H(k)θ + V (k), results are the data in
Z (k) and H(k).

▶ P(R|H):

▶ For a fixed H, we can apply the three axioms of probability.



Likelihood

Definition
Likelihood L(H|R) of the hypothesis H given the results R and a
specific probability model is proportional to P(R|H) with an
arbitrary constant ratio c , i.e.,

L(H|R) = cP(R|H) (or ∝ P(R|H)).

▶ In likelihood, R is fixed where H is variable (or the parameters
in the probability model are variables).

▶ There are no axioms of likelihood.



Example

Probability of the occurrence of boys and girls in a family of two
children (binomial model):

P(R|p) = (m + f )!

m!f !
pm(1− p)f

Two data sets:
R1 = {1 boy and 1 girl}

R2 = {2 boys}

Two hypotheses:
H1 : p = 1/2

H2 : p = 1/4



Calculate P(R |H) and L(H |R)



Continuous distributions

▶ if R is described by a continuous distribution, the probability
obtaining a result within (R,R + dR) is given by P(R|H)dR,
where P(R|H) is the pdf.

▶ L(H|R) = cP(R|H)dR, but c dR can be considered another
constant

▶ L(H|R) = c1P(R|H), where P(R|H) is the pdf.



Likelihood ratio and test

▶ On the same dataset, we can form ratios of likelihoods
(likelihood ratio).

Likelihood-ratio test

L(H1,H2|R) =
L(H1|R)
L(H2|R)

=
P(R|H1)

P(R|H2)

H1 L(H1,H2,R) > c
H2 L(H1,H2,R) < c

H1orH2 L(H1,H2,R) = c



Independent data sets
Likelihood of independent data sets:

L(H|R1, · · · ,Rm) = cP(R1, · · · ,Rm|H)

Log likelihood (i.e., log L(H|R)) is used often.



Example: Gaussian random variable generator

Hypothesis:

Results:

Likelihood:

LRT:



Maximum-Likelihood Estimation (MLE)

Find an estimate θ̂ML that maximizes the data likelihood

▶ Need the likelihood function:

▶ Genearlly, mathematical optimization/programming is needed.

▶ Special case (generic linear model):



Develop MLE

Unknown vector θ in a probability model describing N independent
identically distributed (iid) observations z(k), k = 1, · · · ,N:
Z = (z(1), · · · , z(N)).
Derive the likelihood ℓ(θ|Z ) ∝ p(Z |θ)

Log-likelihood function



An MLE

θ̂ML = argmax ℓ(θ|Z ) (or argmax L(θ|Z )).

▶ If L is differentiable, the partial derivative w.r.t. θ must be
zero at the θ̂ML:

∂L(θ|Z )
∂θ

∣∣∣θ=θ̂ML
= 0.

▶ For maximization, the second order derivative (Hessian)
should be negative definite.

Jo(θ̂ML|Z ) =
∂2L(θ|Z )
∂θi∂θj

∣∣∣θ=θ̂ML
< 0, i , j = 1, 2, · · · , n.

▶ Recall that the Fisher information matrix is indeed given by
−Jo(θ̂ML|Z ), which is positive definite.



Properties

▶ Very popular and widely used

▶ Large-sample properties: consistent, asymptotically Gaussian
with mean θ and covariance J−1/N, and asymptotically
efficient

▶ Functions of maximum-likelihood estimates are themselves
maximum-likelihood estimates:



MLE of mean and variance of a Gaussian rv

Observe random samples z(1), · · · , z(N) of the output of a
Gaussian random number generator and would like to compute a
ML estimate of its mean µ and variance σ2.



The linear model: Z (k) = H(k)θ + V (k)

▶ Common assumptions with BLUE: V (k) ∈ RN is zero mean
white noise, with covariance R(k), H(k) is deterministic.

▶ Likelihood: (Additionally) assume a Gaussian model on V (k)

▶ What about p(Z (k)|θ)?



Show θ̂ML(k) = θ̂BLU(k)

Maximize P(Z (k)|θ) is equivalent to

If R(k) = σ2
v I ,



A dynamical system example
For any MLE problem, 1) obtain the expression of L(θ|Z ) and 2)
maximize L(θ|Z ) w.r.t. θ which typically requires optimization.

Now we look at a LTI system and derive the likelihood function of
unknown parameters in the system.

x(k + 1) = Φx(k) + Ψu(k)

z(k + 1) = Hx(k + 1) + v(k + 1) ∈ Rm, k = 0, · · · ,N − 1.

Here u(k) is known, x(0) is deterministic, v(k) is a zero mean
Gaussian with E (v(k)v(j)T ) = Rδkj . (iid Gaussian noise).

Say θ contains all the unknown parameters in Φ, Ψ, H and R.
Also we assume that θ is identifiable.



The log-likelihood L(θ|Z )



MLE

θ appears in L in a complex nonlinear manner. The only way to do
it is to use nonlinear optimization to obtain a local optimal of θ̂ML.


