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Overview

Objective: Design an unbiased and efficient linear estimator, i.e.,
best linear unbiased estimator (BLUE)

> WLSE is not always unbiased or efficient.

» Assumptions: 1) H(k) is deterministic; 2) V/(k) is zero mean
with a PD covariance matrix R(k).

» Design is more complicated but analysis is easier.

Connection

The BLUE of @ is a special case of WLSE where W(k) = R(k)™ .
P(k) in the recursive WLSE is the covariance matrix for the error
between 6 and fp; (k) in BLUE.

Property
BLUEs are invariant under changes of scales!



Problem

Given Z(k) = H(k)8 + V(k),
» Assumption 1:
» Assumption 2:

» Linear estimator:

Design F (k) such that
1. OgLy(k) is unbiased

2. The error variance of each element of 9BLU(k) is minimized.



Solution methodology (sketch)

1. Create constraints on F(k) to ensure unbiasedness of
OsLu(k).

2. Express the variance E([6; — 8; gLu(k)]?) in terms of F(k).
Here the covariance of V/(k) is used.

3. Minimize the variance in Step 2 with the constraints in Step 1
using Lagrange multipliers.



The derived BLUE and its properties

BLu(k) = (HT(K) R (K)H(K) T HT (k)R (k) Z (k).

» The BLUE is a special case of WLSE with W(k) = R™1(k). If
R(k) = 021, Oy = 0;s.

» Most efficient unbiased estimators that are linear in the
measurements Z(k) given the linear form of the measurement.

> cov(éBLU(k)) = (HT(k)R_l(k)H(k))_l, which is the P(k)
used in the recursive WLSE.

» The recursive form is the same as recursive WLSE, where
w~l(k 4 1) is replaced with R(k + 1).



Invariance to scale changes

OsLu(k) is invariant under changes of scale.

Proof: Observers A and B read the measurements of the same
process in two different scales, related by M.

Zg(k) = Hg(K)0 + Va(k) = MZa(k) = M(HA(K)0 + Va(k))



Proof

Let HAA,BLU(k) and éB7BLu(k) denote the BLUEs associated with
observers A and B. Show HAA,BLU(k) = §B,BLU(/<). The BLUE

algorithm automatically normalizes the data.



Final conclusion

> R(k) is known and H(k) is deterministic, use Ap; ye(k).
> R(k)is known and H(k) is random, use Oy s(k) with
W(k) = R71(k).
k

R(k) is unknown: use Ay s(k) with heuristic W (k).

v



Likelihood

» Probability is associated with a forward experiment/model:

» Likelihood is associated with an inverse model:



Hypothesis H

Suppose that 6 can be only 0 or 1, then there are two hypotheses
associated with 8, Hp : § =0 and H; : 6 =1, i.e., binary
hypothesis.

> Extend to 6 taking discrete values, say 10 values.

> Extend to # taking values within an interval a < 0 < b:

» A vector of parameters, say # € R"*! and each element takes
2 values.



Null hypothesis

All other possibilities that are not already accounted for by the
enumerated hypotheses.

Example



Results (of an experiment)

Results are outputs/data of an experiment.

Example

In the linear model Z(k) = H(k)8 + V/(k), results are the data in
Z(k) and H(k).

> P(R|H):

» For a fixed H, we can apply the three axioms of probability.



Likelihood

Definition

Likelihood L(H|R) of the hypothesis H given the results R and a
specific probability model is proportional to P(R|H) with an
arbitrary constant ratio c, i.e.,

L(H|R) = cP(R|H) (or o P(R|H)).

» In likelihood, R is fixed where H is variable (or the parameters
in the probability model are variables).

» There are no axioms of likelihood.



Example

Probability of the occurrence of boys and girls in a family of two
children (binomial model):

(m+ )

P(RIp) = 7

p7(1—p)f
Two data sets:
Ri1 = {1 boy and 1 girl}
Ry = {2 boys}

Two hypotheses:
H1 L p= 1/2

Hy: p=1/4



Calculate P(R|H) and L(H|R)



Continuous distributions

» if R is described by a continuous distribution, the probability
obtaining a result within (R, R + dR) is given by P(R|H)dR,
where P(R|H) is the pdf.

» L(H|R) = cP(R|H)dR, but ¢ dR can be considered another
constant

» L(H|R) = c1P(R|H), where P(R|H) is the pdf.



Likelihood ratio and test

» On the same dataset, we can form ratios of likelihoods
(likelihood ratio).

Likelihood-ratio test

L(H|R) _ P(R|H.)
L(Hy, H|R) =
(i, Ho| R) L(H2|R) ~ P(R|H,)
Hi L(Hi,H2,R) > c
H> L(Hl,HQ,R) <c
H10fH2 L(Hl,HQ,R) =cC



Independent data sets
Likelihood of independent data sets:

L(H|Ry, - ,Rm) = cP(R1, -, Rm|H)

Log likelihood (i.e., log L(H|R)) is used often.



Example: Gaussian random variable generator

Hypothesis:

Results:

Likelihood:

LRT:



Maximum-Likelihood Estimation (MLE)

Find an estimate éML that maximizes the data likelihood
» Need the likelihood function:

» Genearlly, mathematical optimization/programming is needed.

» Special case (generic linear model):



Develop MLE

Unknown vector 6 in a probability model describing N independent
identically distributed (iid) observations z(k), k =1,--- , N:

Z = (2(1)7 e 7Z(N))

Derive the likelihood £(6|Z)  p(Z|0)

Log-likelihood function



An MLE
Opy = argmax £(0|Z) (or argmax L(0]2)).

> If L is differentiable, the partial derivative w.r.t. § must be
zero at the Oy :

oL(0|Z)

05 It =

» For maximization, the second order derivative (Hessian)
should be negative definite.

Jo(é\ML|Z) =

82L(0\Z) ..
‘HZéML <0, i,j=12,---,n.

06,06,

» Recall that the Fisher information matrix is indeed given by
—Jo(Opmr]Z), which is positive definite.



Properties

» Very popular and widely used

» Large-sample properties: consistent, asymptotically Gaussian
with mean 6 and covariance J~1/N, and asymptotically
efficient

» Functions of maximum-likelihood estimates are themselves
maximum-likelihood estimates:



MLE of mean and variance of a Gaussian rv

Observe random samples z(1),-- -, z(N) of the output of a

Gaussian random number generator and would like to compute a

ML estimate of its mean p and variance o2.



The linear model: Z(k) = H(k)0 + V/ (k)

» Common assumptions with BLUE: V/(k) € RV is zero mean
white noise, with covariance R(k), H(k) is deterministic.

» Likelihood: (Additionally) assume a Gaussian model on V/(k)

» What about p(Z(k)|0)?



Show é\ML(k) = éBLU(k)

Maximize P(Z(k)|0) is equivalent to

If R(k) = o2I,



A dynamical system example
For any MLE problem, 1) obtain the expression of L(#|Z) and 2)
maximize L(0]|Z) w.r.t. 6 which typically requires optimization.

Now we look at a LTI system and derive the likelihood function of
unknown parameters in the system.

x(k +1) = dx(k) + Vu(k)
2(k+1) = Hx(k+ 1)+ v(k+1) €R™  k=0,--- ,N—1.

Here u(k) is known, x(0) is deterministic, v(k) is a zero mean
Gaussian with E(v(k)v(j)T) = Rdy;. (iid Gaussian noise).

Say 6 contains all the unknown parameters in ®, ¥, H and R.
Also we assume that 0 is identifiable.



The log-likelihood L(6|Z)



MLE

0 appears in L in a complex nonlinear manner. The only way to do
it is to use nonlinear optimization to obtain a local optimal of 8y, .



