Introduction to (Bayesian) Estimation MAE 5020

Estimation of random variables

Oklahoma State University

August 15, 2023

(ロ)、(型)、(E)、(E)、 E) の(()

Overview

Objective: transition to estimation of unknown random variables instead of deterministic $\boldsymbol{\theta}$

- Review of Multivariate Gaussian Random Variables
- Maximum a posterior estimation (MAP)

Gaussian rv

1) reasonable approximation to observed random behavior;

2) central limit theorem indicates superposition of an arbitrarily large number of independent microscopic random phenomena is justifiably Gaussian at the macroscopic.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Univariate Gaussian

$$y \sim N(y; m_y, \sigma_y^2)$$
 (mean m_y , variance σ_y^2) if the pdf of y is
 $p(y) = \frac{1}{\sqrt{2\pi\sigma_y^2}} \exp\left[-\frac{(y-m_y)^2}{2\sigma_y^2}\right], \quad -\infty < y < \infty.$ (1)

Multivariate Gaussian

$$y = (y_1, \cdots, y_m)^T$$
. $y \sim N(y; m_y, P_y)$, where $m_y \in \mathbb{R}^m = E(y)$
and $P_y \in \mathbb{R}_{\geq 0}^{m \times m} = E\left((y - m_y)(y - m_y)^T\right)$ if

$$p(y_1, \cdots, y_m) = p(y) = \frac{1}{\sqrt{(2\pi)^m |P_y|}} \exp\left[-\frac{(y - m_y)^T P_y^{-1}(y - m_y)}{2}\right]$$
(2)

•

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Jointly Gaussian random vectors

 $x \sim N(x; m_x, P_x) \in \mathbb{R}^n$, $y \sim N(y; m_y, P_y) \in \mathbb{R}^m$. Then the joint distribution of x, y is Gaussian, given by

$$\rho(x,y) = \frac{1}{\sqrt{(2\pi)^{m+n}|P_z|}} \exp\left[-\frac{(z-m_z)^T P_z^{-1}(z-m_z)}{2}\right]$$
(3)

where $z = (x^T, y^T)^T$, $m_z = (m_x^T, m_y^T)^T$, and

$$P_z = \begin{pmatrix} P_x & P_{xy} \\ P_{yx} & P_y \end{pmatrix}$$
(4)

with

$$P_{xy} = E\left((x - m_x)(y - m_y)^T\right), \qquad (5)$$

$$P_{yx} = E\left((y - m_y)(x - m_x)^T\right) = P_{yx}^T.$$
 (6)

When x and y are statistically independent, $P_{xy} = 0$.

The conditional density function

This is one of the most important density functions we will be interested in.

If x, y are jointly Gaussian,

$$p(x|y) = \frac{1}{\sqrt{(2\pi)^n |D|}} \exp\left[-\frac{(x-m)^T D^{-1}(x-m)}{2}\right]$$
(7)

where

$$m = E(x|y) = m_x + P_{xy}P_y^{-1}(y - m_y)$$
(8)

$$D = P_x - P_{xy} P_y^{-1} P_{yx} > 0.$$
 (9)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Note that m is an affine transformation of y (other terms are all deterministic!)

Linear property

When x and y are jointly Gaussian, z = Ax + By + c is also Gaussian if A, B, c are deterministic.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Properties of conditional mean

Let x, y, z be n, m, r dimensional jointly Gaussian random vectors. If y, z are statistically independent

$$E(x|y,z) = E(x|y) + E(x|z) - m_x.$$
 (10)

else,

$$E(x|y,z) = E(x|y) + E(x|\bar{z}) - m_x$$
(11)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

where $\bar{z} = z - E(z|y)$ (the dependence on y is removed, y and \bar{z} are independent).

MAP Estimation: setting

 \blacktriangleright View θ as

• Measurements $z(1), \cdots, z(k)$ assumed to depend on θ

• Priori probability model on θ : $P(\theta)$

Bayes theorem

$$p(\theta|Z(k)) = \frac{p(Z(k)|\theta)p(\theta)}{p(Z(k))}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

 $p(\theta|Z(k)):$ $p(\theta):$ $p(Z(k)|\theta):$ Since p(Z(k)) does not depend on θ :

The MAP estimate, $\hat{\theta}_{MAP}(k)$ is found to maximize $p(\theta|Z(k))$ or RHS of the above equation.

Properties

• When $p(\theta)$ is uniform

The MAP estimate doesn't "carry over", i.e.,

If there is a lot of measurements (big data),

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Obtaining MAP estimates

- The prior p(θ) and p(Z(k)|θ) must be specified (or at least can be evaluated).
- Maximization of p(θ|Z(k)) or ln p(θ|Z(k)) typically requires optimization.
- In the special case of linear models and Gaussian noise and prior, we can have a closed-form solution.

Example: MAP estimation of Gaussian mean

<ロ> < 団> < 団> < 豆> < 豆> < 豆> < 豆> < </p>

The generic linear Gaussian model

Recall $Z(k) = H(k)\theta + V(k)$, where $\theta \sim N(\theta; m_{\theta}, P_{\theta})$ and $V(k) \sim N(0, R(k))$. Derive its MAP estimate.