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Overview

Objective: transition to estimation of unknown random variables
instead of deterministic θ

▶ Review of Multivariate Gaussian Random Variables

▶ Maximum a posterior estimation (MAP)

Gaussian rv
1) reasonable approximation to observed random behavior;
2) central limit theorem indicates superposition of an arbitrarily
large number of independent microscopic random phenomena is
justifiably Gaussian at the macroscopic.



Univariate Gaussian
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Multivariate Gaussian

y = (y1, · · · , ym)T . y ∼ N(y ;my ,Py ), where my ∈ Rm = E (y)
and Py ∈ Rm×m
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Jointly Gaussian random vectors

x ∼ N(x ;mx ,Px) ∈ Rn, y ∼ N(y ;my ,Py ) ∈ Rm. Then the joint
distribution of x , y is Gaussian, given by
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T
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)
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with
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T
)
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(
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T
)
= PT

yx . (6)

When x and y are statistically independent, Pxy = 0.



The conditional density function

This is one of the most important density functions we will
be interested in.
If x , y are jointly Gaussian,

p(x |y) = 1√
(2π)n|D|

exp

[
−(x −m)TD−1(x −m)

2

]
(7)

where
m = E (x |y) = mx + PxyP

−1
y (y −my ) (8)

D = Px − PxyP
−1
y Pyx > 0. (9)

Note that m is an affine transformation of y (other terms are all
deterministic!)



Linear property

When x and y are jointly Gaussian, z = Ax + By + c is also
Gaussian if A,B, c are deterministic.



Properties of conditional mean

Let x , y , z be n,m, r dimensional jointly Gaussian random vectors.
If y , z are statistically independent

E (x |y , z) = E (x |y) + E (x |z)−mx . (10)

else,
E (x |y , z) = E (x |y) + E (x |z̄)−mx (11)

where z̄ = z − E (z |y) (the dependence on y is removed, y and z̄
are independent).



MAP Estimation: setting

▶ View θ as

▶ Measurements z(1), · · · , z(k) assumed to depend on θ

▶ Priori probability model on θ: P(θ)

Bayes theorem

p(θ|Z (k)) = p(Z (k)|θ)p(θ)
p(Z (k))

p(θ|Z (k)):
p(θ):
p(Z (k)|θ):



MAP Estimation

Since p(Z (k)) does not depend on θ:

The MAP estimate, θ̂MAP(k) is found to maximize p(θ|Z (k)) or
RHS of the above equation.



Properties

▶ When p(θ) is uniform

▶ Generally,

▶ The MAP estimate doesn’t “carry over”, i.e.,

▶ If there is a lot of measurements (big data),



Obtaining MAP estimates

▶ The prior p(θ) and p(Z (k)|θ) must be specified (or at least
can be evaluated).

▶ Maximization of p(θ|Z (k)) or ln p(θ|Z (k)) typically requires
optimization.

▶ In the special case of linear models and Gaussian noise and
prior, we can have a closed-form solution.



Example: MAP estimation of Gaussian mean



The generic linear Gaussian model

Recall Z (k) = H(k)θ + V (k), where θ ∼ N(θ;mθ,Pθ) and
V (k) ∼ N(0,R(k)). Derive its MAP estimate.


