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Overview
▶ All the previous estimators provide a point estimate.

▶ Because of inherent uncertainty due to noise in the data,
point estimates are lacking how good the estimate is, can be
fragile, overfit

▶ Bayesian inference aims at obtaining the posterior distribution
p(θ|Z (k)) (of course, based on Bayes theorem)



Discrete case

P(D = 1) = 0.01: prior probability of being infected by a disease
P(T |D = 1) = 0.95 : positive if infected
P(T |D = 0) = 0.05: positive if not infected.
Suppose that someone is tested positive. What can be concluded?

▶ MLE of D: no consideration of P(D).

▶ MAP of D: maximize P(D)P(T |D)



Bayesian inference

Posterior distribution

P(D = 1|T ) =
P(D = 1)P(T |D = 1)

P(T )

=
P(D = 1)P(T |D = 1)

P(T |D = 1)P(D = 1) + P(T |D = 0)P(D = 0)

Therefore,
P(D = 1|T ) ≈ 0.161

Use the same information as in MAP, but provide a posterior
probability distribution on the outcome.



Continuous distributions

Bayes theorem:

p(θ|z) = p(z |θ)p(θ)
p(z)

▶ Since p(z) is independent of θ,

▶ What is p(z)? Following a similar idea from the discrete case

p(z) =

∫
p(z |θ)p(θ)dθ

▶ This integral (aka ‘evidence’ or ’marginal likelihood’) is
challenging to compute most of time.

▶ Special cases including linear Gaussian models.



The generic linear model Z (k) = H(k)θ + V (k)
θ ∼ N(θ;mθ,Pθ) and V (k) ∼ N(0,R(k)).
Show p(θ|Z (k)) ∼ N(b,D) where

b = (P−1
θ + HTR−1H)−1(P−1

θ mθ + HTR−1z)

D−1 = (P−1
θ + HTR−1H)−1



Connection with the conditional mean identity



Implications

▶ Posterior for linear Gaussian models

▶ Observe it in the information form.

▶ However, analytical posterior is rare!



Go beyond the linear Gaussian models

▶ Full-blown Bayesian: Markov Chain Monte Carlo (MCMC)
sampling

▶ Other approximation methods: linearization, Variational
Inference, ...



Benefits of posterior distribution

▶ Making educated guess: based on the posterior p(θ|Z (k)),
propose a point estimate θ̂

▶ Quantifying uncertainty: creating credible region/percentile,
i.e., 1-sigma, 2-sigma.

▶ Generating predictions

▶ Comparing models



Making prediction
Given a posterior distribution p(θ|Z (k)), we can marginalize the
distribution of θ to predict new data Z̃ .

p(Z̃ |Z (k)) =
∫

p(Z̃ |θ)︸ ︷︷ ︸ p(θ|Z (k))︸ ︷︷ ︸ dθ

▶ This is an expectation of p(Z̃ |θ) w.r.t.

We are more interested in computing integrals over the
posterior rather than knowing the posterior itself.



Markov Chain Monte Carlo (MCMC) Sampling

▶ Sampling: a set of K values θk drawn from a pdf p(θ).

Definition {θk}Kk=1

Ep(θ)(θ) =

∫
θp(θ)dθ Ep(θ)(θ) ≈

1

K

K∑
k=1

θk

Ep(θ)(g(θ)) =

∫
g(θ)p(θ)dθ Ep(θ)(g(θ)) =≈

1

K

K∑
k=1

g(θk)

▶ Sampling approximation becomes exact when K goes to
infinity.



Unnormalized posterior

Typically we do not have p(θ|Z (k)), but only have
f (θ) ≜ p(θ)p(Z (k)|θ)
▶ p(θ|Z (k)) ∝ f (θ). Thus, the normalizing constant C is

Ep(θ)(g(θ)) =

∫
g(θ)p(θ)dθ =

∫
g(θ)f (θ)dθ

C

▶ When samples from f (θ) are available,

Ep(θ)(g(θ)) ≈



MCMC

▶ MCMC seeks to generate samples proportional to the
posterior P(θ|Z (k))

▶ Simulate a Markov chain (a series of values)
θ1 → θ2 · · · → θK in a way that their density after
“burning-in” period follows the posterior p(θ|Z (k)).

▶ Markov chain:

▶ Monte Carlo:

▶ Key objective of MCMC: not to approximate/explore the
posterior, but to estimate the expectation



Metropolic-Hastings (M-H) MCMC

▶ Key idea: generate new samples θi+1 from θi such that as
K →∞
1. the distribution of the samples converges
2. the converging distribution is p(θ|Z (k))

▶ M-H: Simplest MCMC algorithm

▶ The first condition is satisfied by detailed balance of the
sample generating process P(θi+1|θi ):

P(θi+1|θi )P(θi ) = P(θi+1, θi ) = P(θi |θi+1)P(θi+1)

P(θi+1|θi )
P(θi |θi+1)

=
P(θi+1)

P(θi )
=

p(θi+1|Z (k))
p(θi |Z (k))

∗

since we want the converging distribution to be p(θi+1|Z (k)).



Sample generating process

1. Propose a new sample θ̂i+1 based on a proposal distribution
Q(θ̂i+1|θi )

2. Accept θi+1 = θ̂i+1 or reject θi+1 = θi with some transition
probability T (θi+1|θi )

▶ The proposal distribution chosen to be simple to generate new
samples from simulations.

▶ T (θi+1|θi ) determined by the detailed balance equation (*)

P(θi+1|θi ) = Q(θi+1|θi )T (θi+1|θi )

T (θi+1|θi )
T (θi |θi+1)

=
Q(θi |θi+1)p(θi+1|Z (k))
Q(θi+1|θi )p(θi |Z (k))

=
Q(θi |θi+1)f (θi+1)

Q(θi+1|θi )f (θi )
Metropolis criterion:

T (θi+1|θi ) = min

{
1,

Q(θi |θi+1)f (θi+1)

Q(θi+1|θi )f (θi )

}
∗∗



Overall algorithm

1. Generate a new sample θ̂i+1 from a proposal distribution
Q(θ̂i+1|θi )

2. Compute T (θi+1|θi ) from (**)

3. Generate a random number ui+1 uniformly distributed in [0, 1]

4. If ui+1 ≤ T (θi+1|θi ), accept the move and set θi+1 = θ̂i+1.
Else, reject the move and set θi+1 = θi .

5. Increment i = i + 1 and repeat.



A simplified version

1. Generate a new sample θ̂i+1 from a proposal distribution
Q(θ̂i+1|θi )

2. Generate a random number ui+1 uniformly distributed in [0, 1]

3. If f (θ̂i+1)/f (θi ) > ui+1, accept and set θi+1 = θ̂i+1. Else,
reject the move and set θi+1 = θi .
Or 3)’ If log f (θ̂i+1)− log f (θi ) > log ui+1, accept and set
θi+1 = θ̂i+1. Else, reject the move and set θi+1 = θi .

▶ A candidate Q(θ̂i+1|θi ): multi-variate Gaussian distribution
for θ̂i+1 with mean θi and some simple (e.g., diagonal)
covariance.

▶ Algorithm requires Q(θi |θi+1)
Q(θi+1|θi ) = 1.



Example

Sample from p(θ) ∼ N(2, 2), using Q(θ̂|θ) ∼ N(θ, 1). Initialize the
sampler with θ = 0. Run the sampler for more than 104 steps and
plot the results as a histogram.



Caveats

▶ Proposal distribution: user controlled function.

▶ Convergence: No simple answer. You cannot know you have
sampled the full posterior.

▶ Autocorrelation: nearby points are strongly correlated, but
sufficiently distant points will be less correlated.

▶ Initialization: typical/pretty good place in the posterior pdf.
For example, run MAP estimation for a few steps.

▶ Burn-in period: Discard the beginning of your MCMC run
befor using the samples.

▶ Multi-modal: may need multiple chains with different
initializations.



Introduction to Variational Inference (VI/VB)

▶ VI: approximating probability densities

▶ The same problem as MCMC

p(θ|Z (k)) ∝ p(θ)p(Z (k)|θ)

▶ MCMC does not scale well to large models or datasets (active
investigation)

▶ VI: Alternative to MCMC sampling, faster and easier to scale
to large data



Main idea: Use optimization

1. Consider a family of approximate densities Q.
2. Find q ∈ Q that minimizes the Kullback-Leibler divergence to

p(θ|Z (k)), i.e.,

q∗(θ) = arg min
q∈Q

KL(q(θ)||p(θ|Z (k)))

3. Take q∗(θ) as the approximate posterior

• Q should be flexible to capture the target density but also simple
for efficient optimization!
• Graphically:



Kullback-Leiber (KL) Divergence (relative entropy)

▶ Statistical distance measuring how one probability distribution
differs from a second distribution

KL divergence

For two pdfs p(x) and q(x) of a continuous rv x , the KL
divergence KL(p||q) is defined as

KL(p||q) =
∫

p(x) log

(
p(x)

q(x)

)
= Ep[log p]− Ep[log q]dx .

▶ Asymmetric:

▶ It does not satisfy triangle inequality.

▶ Thus, it is not a metric.





Properties of KL divergence

▶ KL(p||q) ≥ 0. When KL(p||q) = 0, p = q almost everywhere.

▶ KL divergence is invariant under parameter transformations.

▶ For any λ ∈ [0, 1],

KL(λ1p1 + (1− λ)p2||λ1q1 + (1− λ)q2) ≤

λ1KL(p1||q1) + (1− λ1)KL(p2||q2)



Example: Gaussian distribution

▶ Let p0 ∼ N(µ0,Σ0), p1 ∼ N(µ1,Σ1).

KL(p0||p1) =
1

2

(
tr(Σ−1

1 Σ0)− n + (µ1 − µ0)
TΣ−1

1 (µ1 − µ0)+(
ln

detΣ1

detΣ0

)
.

Show the simple case where µ0 = µ1 = 0.



Back to VI: Evidence lower bound (ELBO)

q∗(θ) = arg min
q∈Q

KL(q(θ)||p(θ|Z (k)))

▶ The KL divergence objective is not computable because it
depends on log p(Z (k)).

KL(q(θ)||p(θ|Z (k))) = Eq[log q(θ)]− Eq[log p(θ|Z (k))].

▶ Therefore, we maximize an alternative objective

ELBO(q) = Eq[log p(θ,Z (k))− Eq[log q(θ)]]

▶ Why are they equivalent?



Rewrite ELBO

ELBO(q) = Eq[log p(θ,Z (k))− Eq[log q(θ)]]

= Eq[log p(Z (k)|θ)p(θ)]− Eq[log q(θ)]

= Eq[log p(Z (k)|θ)]− KL(q||p)

Two aspects



Why is it called ELBO?
Evidence log p(Z (k)) ≥ ELBO(q). Why?

log p(Z (k)) = KL(q(θ)||p(θ|Z (k))) + ELBO(q)



Maximization of ELBO

ELBO(q) = Eq[log p(θ,Z (k))− Eq[log q(θ)]]

= Eq[log p(Z (k)|θ)]− KL(q||p)

Two approaches:

▶ Mean-field variational family

▶ Fixed-field optimization



Mean-field

▶ θ contains mutually independent components and each
governed by a distinct factor in q(θ), i.e.,

q(θ) =
m∏
j=1

qj(θj), θ ∈ Rn

▶ Note that qj(·)’s are used to approximate the posterior
p(θj |Z (k))

▶ The correlation between θj ’s in p(θj |Z (k)) is not captured in
q(θ).

▶ qj(·) can take any parametric form appropriate to the
corresponding random variable, e.g., Gaussian.



Example

Choose q1 ∼ N(0, s1) and q2 ∼ N(0, s2) to approximate
p ∼ N(0,Σ).

First, what is the distribution for q?

Second, calculate the KL divergence from formula.

KL(q||p) = 1

2

(
tr(Σ−1diag(s1, s2))− 2 + ln detΣ− ln s1s2

)

Third, minimize the KL divergence by optimizing s1 and s2



Comparison in plotting



Coordinate ascent VI (CAVI)

CAVI iteratively optimizes each qj while holding the other fixed. It
climbs the ELBO to a local optimum.

q∗(θj) ∝ exp{E−j [log p(θj |θ−j ,Z (k))]}

∝ exp{E−j [log p(θj , θ−j ,Z (k))]

▶ θ−j :

▶ The expectation E−j is over θ−j , i.e.,



CAVI Algorithm

Input: A model p(θ,Z (k)) = p(Z (k)|θ)p(θ), and data Z (k)
Output: variational density q(θ) =

∏m
j=1 qj(θj)

Initialization: qj(θj)
While the ELBO has not converged do

for j ∈ {1, · · · ,m} do
Set q(θj) ∝ exp{E−j [log p(θj |θ−j ,Z (k))] or
exp{E−j [log p(θj , θ−j ,Z (k))

end
Compute ELBO(q) = E [log p(θ,Z (k))]− E [log q(θ)]

return q(z)



Example: Bayesian linear regression with Automatic
Relevance Determination

Suppose that we are given data Z ∈ Rn and input x ∈ Rn×D . We
are interested in finding a linear coefficient β and relationship

zi ≈ βT xi = xTi β, ∀i

where β ∈ RD , zi ∈ R and xi ∈ RD .

Automatic relevance determination (ARD)

Assigns a separate prior for each βi . Automatically shrinks βi if it
is not relevant in the regression. ARD works by setting a
hyper-prior for the prior on each βi to encourage small values.



Formulation

Gaussian likelihood for the data (τ : precision):

p(y |β, τ) =
n∏

i=1

N(yi |βT xi , τ
−1)

Priors on β and τ :

p(β, τ |α) = N(0, [τdiag(α)]−1)Gam(τ |a0, b0)

Hyper-prior on prior parameter α:

p(α) =
D∏

d=1

Gam(αd |c0, d0)

Gam: Gamma distribution, a0, b0, c0, d0 are fixed constants.



CAVI

Infer the posterior p(β, τ, α|y , x) using CAVI

q(β, τ, α) = q(β, τ)q(α)

Conditioned on q(α), identify the optimal q(β, τ):

log q(β, τ) = Eq(α) log[p(α)p(β, τ |α)p(y |β, τ)] + const.

= Eq(α) log p(β, τ |α) + log p(y |β, τ) + const.

= logN(β|β∗, τ−1V∗) + logGam(τ |a∗, b∗)

V−1
∗ = Eα[diag(alpha)] +

∑
i xix

T
i , β∗ = V∗

∑
i xiyi ,

a∗ = a0 + n/2, b∗ = b0 + 1/2(
∑

i y
2
i − βT

∗ V−1
∗ β∗)



On q(α)

log q(αd) = Eβ,τ [log p(β, τ |αd)] + log p(αd) + const.

= logGam(αd |c∗, d∗d)

c∗ = c0 + 1/2, d∗d = d0 + 1/2Eβ,τ [τβ
2
d ].

The expectations can be computed as
Eα[diag(α)] = c∗diag(1/d∗), Eβ,τ [τβ

2
d ] = β2

∗da∗/b∗ + [V∗]d .

CAVI: Iteratively update a∗, b∗, c∗, d∗, V
−1
∗ , and β∗.



Example: sparse linear regression



Second approach: Fixed form VI

Assumes a fixed parametric form q(θ) = qλ(θ).

Example

Gaussian

Maximize the ELBO(q) by optimizing the parameters λ

ELBO(qλ) = Eqλ [log p(θ,Z (k))− Eqλ [log qλ(θ)]]

= Eqλ [log p(Z (k)|θ)]− KL(qλ||p)



The key step in the optimization: gradient of ELBO

∇λELBO(qλ) = ∇λ

∫
qλ(θ) log

p(θ)p(Z (k)|θ)
qλ(θ)

dθ

=

∫
∇λqλ(θ) log

p(θ)p(Z (k)|θ)
qλ(θ)

dθ

−
∫

qλ(θ)∇λ log qλ(θ)dθ

=

∫
qλ(θ)∇λ log qλ(θ) log

p(θ)p(Z (k)|θ)
qλ(θ)

dθ

−
∫
∇λqλ(θ)dθ

= Eqλ [∇λ log qλ(θ) log
p(θ)p(Z (k)|θ)

qλ(θ)
]−∇λ

∫
qλ(θ)dθ

= Eqλ

[
∇λ log qλ(θ) · log

p(θ)p(Z (k)|θ)
qλ(θ)

]
.

“score-function gradient”



Stochastic optimization: estimation of the gradient

- Draw samples θs ∼ qλ(θ), s = 1, · · · ,S
- Compute an estimate of the gradient of ELBO by sample average:

̂∇λELBO ≜
1

S

S∑
s=1

∇λ log qλ(θs) · log
p(θs)p(Z (k)|θs)

qλ(θs)

- Update λ← λ+ at ̂∇λELBO with a step-size at



Final comment: comparison between MCMC and VI

From Variational Inference: A Review for Statisticians by Blei, et
al. 2016

“MCMC methods tend to be more computationally intensive than
variational inference but they also provide guarantees of producing
(asymptotically) exact samples from the target density. Variational
inference does not enjoy such guarantees—it can only find a
density close to the target—but tends to be faster than MCMC.”

“Thus, variational inference is suited to large data sets and
scenarios where we want to quickly explore many models; MCMC
is suited to smaller datasets and scenarios where we happily pay a
heavier computational cost for more precise samples.”


