Introduction to (Bayesian) Estimation MAE 5020

Elements of Gauss-Markov Random Sequences

Oklahoma State University

November 1, 2023

Overview

▶ Transition from parameter estimation to recursive state estimation

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

- ▶ First-order Markov sequence
- ▶ Gaussian White Noise
- ▶ A basic state-variable model

Random sequence and process

▶ Scalar random sequences and processes: scalar random sequence consists of a group of related scalar random variables at discrete points in time or space. "process" assumes continuous in time or space.

KORKARYKERKER POLO

▶ Wide-sense stationary:

Random sequence and process

▶ Non-stationary:

Formally

- ▶ A vector random process is a family of random vectors $\{s(t), t \in J\}$ indexed by t all of whose values lie in an index set *J*. When $J = \{k = 0, 1, \dots\}$ (discrete), $\{s(t), t \in J\}$ is called a discrete time random sequence.
- ▶ A vector random sequence $\{s(t), t \in J\}$ is multivariate **Gaussian** if for **any** ℓ time points, t_1, \cdots, t_ℓ , the set of ℓ random vectors $s(t_1), \cdots, s(t_\ell)$ is jointly Gaussian.
- ▶ A vector random sequence $\{s(t), t \in J\}$ is a (first-order) **Markov sequence**, if for any m (integer) time points $t_1 < t_2 < \cdots < t_m$, the probability law (e.g., pdf) at t_m depends only on the immediate past value at t_{m-1} .
	- \blacktriangleright For example for continuous random variables, $p[s(t_m)|s(t_{m-1}, \cdots, s(t_1)] = p[s(t_m)|s(t_{m-1})].$
	- ▶ If $s(t_m)$ depends on both $s(t_{m-1})$ and $s(t_{m-2})$, it is called second-order Markov sequence.

KORKAR KERKER SAGA

Fact

Let $s(t)$ be a first-order Markov sequence. Suppose $t_1 < t_2 < \cdots < t_m$.

$$
p[s(t_m), s(t_{m-1}), \cdots, s(t_1)] =
$$

$$
p[s(t_m)|s(t_{m-1})|p[s(t_{m-1})|s(t_{m-2})\cdots p[s(t_2)|s(t_1)]p[s(t_1)].
$$

KO K K Ø K K E K K E K V K K K K K K K K K

Comments

• A Markov sequence depends on

• Easy to show $E[s(t_m)|s(t_{m-1}), \cdots, s(t_1)] =$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Gaussian white noise

A vector random sequence $s(t)$ is a Gaussian white noise/sequence if for any m (integer) time points $t_1 < t_2 < \cdots < t_m$, the random vectors $s(t_1), \cdots, s(t_m)$ are uncorrelated Gaussian random vectors.

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

• Properties:

The basic state-variable model: linear time-varying

$$
x(k + 1) = \Phi(k + 1, k)x(k) + \Gamma(k + 1, k)w(k) + \Psi(k + 1, k)u(k)
$$

$$
z(k + 1) = H(k + 1)x(k + 1) + v(k + 1), \quad k = 0, 1, \cdots.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Comments

 $\blacktriangleright \Phi$, Γ and Ψ may not always depend on $(k+1)$ or k.

 \triangleright w(k) is used to model uncertainties in the process, including

Kロトメ部トメミトメミト ミニのQC

\blacktriangleright $\upsilon(k)$:

\blacktriangleright This is a basic linear model.

Properties

When $x(0)$ and $w(k)$ are jointly Gaussian, $x(k)$, $k = 0, 1, \cdots$ is a Gauss-Markov sequence.

KO K K Ø K K E K K E K V K K K K K K K K K

Properties

A Gauss-Markov sequence can be characterized by the mean and the covariance of the state vector sequence. Propagation of Mean: $m_x(k) = \mathbb{E}(x(k))$

 $m_x(k+1) = \Phi(k+1, k) m_x(k) + \Psi(k+1, k) u(k), \quad k = 0, 1, \cdots$

KORKAR KERKER SAGA

Propagation of covariance

Recall $P_{x}(k) = \mathbb{E}(x(k) - m_{x}(k))(x(k) - m_{x}(k))^{T}$. Then,

 $P_{x}(k+1) = \Phi(k+1, k) P_{x}(k) \Phi^{T}(k+1, k) + \Gamma(k+1, k) Q(k) \Gamma^{T}(k+1, k)$

KORKARYKERKER POLO

Cross-covariance and measurements

Recall
$$
E[(x(i) - m_x(k))(x(j) - m_k(j))^T] = P_x(i, j)
$$
. Then

$$
P_x(i, j) = \begin{cases} \Phi(i, j)P_x(j) & i > j \\ P_x(i) \Phi^T(j, i) & i < j. \end{cases}
$$

Measurement model for $z(k + 1)$ is also Gaussian with

$$
m_z(k + 1) = H(k + 1)m_x(k + 1) \quad \because E(v(k)) = 0
$$

\n
$$
P_z(k + 1) = H(k + 1)P_x(k + 1)H(k + 1)^T + R(k + 1).
$$

Example

$$
x(k + 1) = 1/2x(k) + w(k)
$$

$$
z(k + 1) = x(k + 1) + v(k + 1)
$$

$$
m_x(0) = 4, p_x(0) = 10, q = 20, \text{ and } r = 5.
$$

KO KKOKKEKKEK E 1990

Stationary sequence

▶ Stationary means:

 \blacktriangleright If in addition, Φ is asymptotically stable (all poles lie inside the unit circle), $P_{\scriptscriptstyle \cal X}(k)$ converges to a limiting solution $\bar P_{\scriptscriptstyle \cal X}$ satisfying the discrete time Lyapunov equation

$$
\bar{P}_x = \Phi \bar{P}_x \Phi^T + \Gamma Q \Gamma^T.
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →