Digital Control Systems MAE/ECEN 5473

Control design in frequency domain

Oklahoma State University

August 14, 2023

What we have covered so far:

▶ Conventional (classical): Analysis Design

▶ Modern (state space): Analysis Design

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Conventional control design

▶ Based on Z-transform

▶ Open-loop system vs. closed-loop system in block diagrams

 \triangleright Objective: design $G_D(z)$ such that the closed-loop system satisfies certain performance requirements.

Performance specifications

▶ Transient performance

- ▶ Steady-state performance
- \triangleright Standard testing signal for r (input):
	- \blacktriangleright (unit) step function
	- ▶ ramp function
	- ▶ acceleration function
	- \blacktriangleright sinusoidal funcation

Transient performance

Given a step input (assume all initial conditions are 0):

- ▶ delay time (t_d) : time when the output reaches $\frac{C_F}{2}$
- ▶ rise time (t_r) : time the output takes to rise from 10% C_F to 90% C_F
- ▶ peak time (t_p) : time when the output reaches the first peak
- \blacktriangleright Maximum shoot: the output at t_p , $y(t_p)$
- ▶ Overshoot percentage: $\frac{y(t_p)-C_F}{C_F} \times 100\%$
- ▶ Settling time (t_s) : time required for the output to settle within 2% (5%) of the final value C_F

KORK EXTERNE PROVIDE

Map damping ratio/natural frequency in Z-domain

Recall $z = e^{Ts}$. Since $s = \sigma + j\omega$,

$$
z = e^{\mathcal{T}(\sigma + j\omega)} = e^{\mathcal{T}\sigma} e^{j\mathcal{T}\omega}.
$$
 (1)

KORKARYKERKER POLO

Consider the 2nd order system: $G(s) = \frac{w_n^2}{s^2 + 2\zeta w_n s + w_n^2}$

- ▶ Poles: $s_{1,2} = -\zeta w_n \pm \sqrt{1-\zeta^2} w_n j w_n, \zeta$?
- **►** From [\(1\)](#page-5-0), $z_{1,2} = e^{Ts_{1,2}} = e^{-\zeta w_n T} e^{\pm T \sqrt{1-\zeta^2} w_n j}$.
- ▶ Thus, $|z_{1,2}| = e^{-\zeta w_n T}$, $\angle z_{1,2} = \pm T \sqrt{1 \zeta^2} w_n$.
- ► Given ζ , w_n , we can find the corresponding poles in DT: $z_{1,2} = e^{-\zeta w_n T} e^{\pm T \sqrt{1 - \zeta^2 w_n j}}.$

Given a z-domain pole $z = r\angle\theta$ (complex poles), find the corresponding ζ, w_n . Also compute the time constant $\tau = \frac{1}{\zeta w}$ $\frac{1}{\zeta w_n}$ in terms of T, r, θ . Hint: Start with $r = e^{-\zeta w_n T}$ and $\theta = T \sqrt{1-\zeta^2} w_n$ to solve for w_n and ζ in terms of r, θ, T .

Steady-state (SS) performance

- ▶ Measured by SS errors (use Final value theorem (FVT), assume FVT can be applied)
- ▶ Type 0, I, II, ... systems:
	- ▶ Type 0: finite SS error for step input, infinite error for higher order inputs (ramp, acceleration, ...)
	- ▶ Type I: 0 SS error for step input, finite SS error for ramp input, infinite SS error for higher order input (acceleration, ...)

As the system type increases

- ▶ better SS performance
- ▶ difficult to stabilize

System type

▶ Suppose that the open-loop PFT is $\frac{1}{(z-1)^N}$ $B(z)$ $\frac{B(z)}{A(z)}$, where $B(z)$ and $A(z)$ contain no zero or pole at $z = 1$. The closed-loop system is type N, provided that the closed-loop system is stable.

KORKARYKERKER POLO

Example for $N = 1, 2$ with the block diagram

K ロ K K d K K B K K B K X A K K K G K C K

Root locus based control design

The PTF of the closed-loop system is given by

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Root locus based control design

The PTF of the closed-loop system is given by

$$
\frac{C(z)}{R(z)} = \frac{KG(z)}{1 + KGH(z)}
$$

KORK ERKER ADAM ADA

where $G(z) = Z(G(s))$ and $GH(z) = Z(G(s)H(s)).$

Root locus based control design

The PTF of the closed-loop system is given by

$$
\frac{C(z)}{R(z)} = \frac{KG(z)}{1 + KGH(z)}
$$

where
$$
G(z) = Z(G(s))
$$
 and
\n $GH(z) = Z(G(s)H(s)).$

The characteristic equation of the PTF is given by

$$
\star: 1 + KGH(z) = 0, \quad KGH(z) = \frac{num(z)}{den(z)}.
$$
 (2)

Root locus (RL) is the plot of the locus of the roots of \star in the z-plane as a function of K .

- ▶ The construction procedure of RL in DT is the same as in CT.
- ▶ The stability region in DT is the unit circle while in CT it is the open left half plane.

1. RL originates from the poles of $GH(z) = 0$ (den(z) = 0) and terminate at the zeros of $GH(z) = 0$ (num(z) = 0) (including ∞). why?

1. RL originates from the poles of $GH(z) = 0$ (den(z) = 0) and terminate at the zeros of $GH(z) = 0$ (num(z) = 0) (including ∞). why?

$$
1+KGH(z)=0 \Rightarrow 1+K\frac{num(z)}{den(z)}=0 \Rightarrow den(z)+Knum(z)=0
$$

RL starts at $K = 0 \Rightarrow den(z) = 0 \Rightarrow poles$ of $GH(z)$ RL terminates at $K = \infty \Rightarrow num(z) = 0 \Rightarrow$ zeros of $GH(z)$

KORKARYKERKER POLO

1. RL originates from the poles of $GH(z) = 0$ (den(z) = 0) and terminate at the zeros of $GH(z) = 0$ (num(z) = 0) (including ∞). why?

$$
1+KGH(z)=0 \Rightarrow 1+K\frac{num(z)}{den(z)}=0 \Rightarrow den(z)+Knum(z)=0
$$

RL starts at $K = 0 \Rightarrow den(z) = 0 \Rightarrow poles$ of $GH(z)$ RL terminates at $K = \infty \Rightarrow num(z) = 0 \Rightarrow$ zeros of $GH(z)$

2. The RL on the real axix lies in a section of the real axis that is to the left of an odd number of poles and zeros on the real axis.

KORKAR KERKER SAGA

1. RL originates from the poles of $GH(z) = 0$ (den(z) = 0) and terminate at the zeros of $GH(z) = 0$ (num(z) = 0) (including ∞). why?

$$
1+KGH(z)=0 \Rightarrow 1+K\frac{num(z)}{den(z)}=0 \Rightarrow den(z)+Knum(z)=0
$$

RL starts at $K = 0 \Rightarrow den(z) = 0 \Rightarrow poles$ of $GH(z)$ RL terminates at $K = \infty \Rightarrow num(z) = 0 \Rightarrow$ zeros of $GH(z)$

2. The RL on the real axix lies in a section of the real axis that is to the left of an odd number of poles and zeros on the real axis.

KORKAR KERKER SAGA

3. The RL is symmetric w.r.t. the real axis.

Continued: RL drawing rules (only important ones)

- 4. The number of asymptotes of RL equals $n_p n_z$, n_p , n_z are the number of the poles and zeros of $GH(z)$, respectively. The angles of the asymptotes are $\frac{(2k+1)\pi}{n_p-n_z}$, $k=0,1,\cdots$.
- 5. The asymptotes intersect the real axis at $\sigma = \frac{\sum \text{poles of } GH(z) - \sum \text{zeros of } GH(z)}{n_z - n_z}$ $n_p - n_z$
- 6. The breakaway points are given by the roots of $\frac{dGH(z)}{dz}=0$.

KORKAR KERKER DRAM

Example:
$$
KGH(z) = \frac{K0.368(z+0.717)}{(z-1)(z-0.368)}
$$

K ロ K K d K K B K K B K X A K K K G K C K

Design via RL

Principle

Consider a closed-loop system and its characteristic equation $1 + KD(z)G(z) = 0$. Then a point z_a is on the RL if $1 + KD(z_a)G(z_a) = 0$ for some K and $D(z)$.

$$
1 + \mathcal{K}D(z_a)G(z_a) = 0 \Leftrightarrow \begin{cases} \ \mathcal{K} = \frac{1}{|D(z_a)G(z_a)|} \\ \angle D(z_a)G(z_a) = \pm 180^\circ \end{cases} \tag{3}
$$

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

Design $D(z)$ such that the closed-loop poles satisfy certain requirements, such as a desired damping ratio and settling time. Example (MATLAB code): $G_p(s) = \frac{1}{s(s+2)}$

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코』 Y 9 Q @

K ロ K K d K K B K K B K X A K K K G K C K

Control design based on frequency response

In CT, given a stable LTI system $G(s)$ with $sin(wt)$ as input:

$$
x_{ss}(t) = \underbrace{|G(j\omega)|}_{\text{magnitude}} \sin(wt + \underbrace{\angle G(j\omega)}_{\text{phase shift}})
$$

KO K K Ø K K E K K E K V K K K K K K K K K

Control design based on frequency response

In CT, given a stable LTI system $G(s)$ with sin(wt) as input:

In DT, given a stable LTI system $G(z)$ with sampled $sin(wt)$ as input:

KORKARYKERKER POLO

Recall $z = e^{Ts}$ and let $s = j\omega$.

Control design based on frequency response

In CT, given a stable LTI system $G(s)$ with sin(wt) as input:

In DT, given a stable LTI system $G(z)$ with sampled $sin(wt)$ as input:

Recall $z = e^{Ts}$ and let $s = j\omega$.

Observation

 $|G(z)|_{z=e^{j\omega\tau}}$ provides magnitude and phase information of the frequency response of $G(z)$.

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

w-plane

- Evaluating $G(e^{j\omega T})$ can be complex.
- ▶ Simplify the procedure by transforming the design from z-domain to w-domain via the "bilinear" transformation

$$
w = \frac{2 z - 1}{T z + 1} \Leftrightarrow z = \frac{1 + \frac{T}{2}w}{1 - \frac{T}{2}w}
$$

KID KA KERKER KID KO

 \blacktriangleright w-plane and s-plane are different. Why?

Once $G(z)$ is transformed to $G(w) = G(z)|_{z=\frac{1+\frac{T}{2}w}{z-\frac{T}{2}}}$ $1-\frac{T}{2}w$, it may be

2 treated as a conventional TF in w-domian. Conventional frequency response based designs can be applie to $G(w)$.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

Once $G(z)$ is transformed to $G(w) = G(z)|_{z=\frac{1+\frac{T}{2}w}{z-\frac{T}{2}}}$ $1-\frac{T}{2}w$, it may be

2 treated as a conventional TF in w-domian. Conventional frequency response based designs can be applie to $G(w)$.

KELK KØLK VELKEN EL 1990

- ▶ By replacing $w = j\nu$, we can draw the Bode plot for $G(w)|_{w=iv}$.
- \blacktriangleright However, the frequency axis in the w-plane is distorted:

Once $G(z)$ is transformed to $G(w) = G(z)|_{z=\frac{1+\frac{T}{2}w}{z-\frac{T}{2}}}$ $1-\frac{T}{2}w$, it may be

2 treated as a conventional TF in w-domian. Conventional frequency response based designs can be applie to $G(w)$.

KELK KØLK VELKEN EL 1990

▶ By replacing $w = j\nu$, we can draw the Bode plot for $G(w)|_{w=iv}$.

 \blacktriangleright However, the frequency axis in the w-plane is distorted:

$$
w = j\nu = \frac{2}{T} \frac{z - 1}{z + 1} |_{z = e^{j\omega T}} = j\frac{2}{T} \tan \frac{\omega T}{2}
$$

$$
\nu = \frac{2}{T} \tan \frac{\omega T}{2}
$$

Once $G(z)$ is transformed to $G(w) = G(z)|_{z=\frac{1+\frac{T}{2}w}{z-\frac{T}{2}}}$ $1-\frac{T}{2}w$, it may be

2 treated as a conventional TF in w-domian. Conventional frequency response based designs can be applie to $G(w)$.

▶ By replacing $w = j\nu$, we can draw the Bode plot for $G(w)|_{w=iv}$.

 \blacktriangleright However, the frequency axis in the w-plane is distorted:

$$
w = j\nu = \frac{2}{T} \frac{z - 1}{z + 1} |_{z = e^{j\omega T}} = j\frac{2}{T} \tan \frac{\omega T}{2}
$$
 When ωT is small,

$$
\nu = \frac{2}{T} \tan \frac{\omega T}{2}
$$

$$
\nu = \frac{2}{T} \tan \frac{\omega T}{2} \approx \frac{2}{T} \frac{\omega T}{2} = \omega
$$

KORKAR KERKER SAGA

 ν : ficticious frequency in w-plane, ω : true frequency

Once $G(z)$ is transformed to $G(w) = G(z)|_{z=\frac{1+\frac{T}{2}w}{z-\frac{T}{2}}}$ $1-\frac{T}{2}w$, it may be

2 treated as a conventional TF in w-domian. Conventional frequency response based designs can be applie to $G(w)$.

- \blacktriangleright By replacing $w = j\nu$, we can draw the Bode plot for $G(w)|_{w=iv}$.
- \blacktriangleright However, the frequency axis in the w-plane is distorted:

$$
w = j\nu = \frac{2}{T} \frac{z - 1}{z + 1} |_{z = e^{j\omega T}} = j\frac{2}{T} \tan \frac{\omega T}{2}
$$
 When ωT is small,

$$
\nu = \frac{2}{T} \tan \frac{\omega T}{2}
$$

$$
\nu = \frac{2}{T} \tan \frac{\omega T}{2} \approx \frac{2}{T} \frac{\omega T}{2} = \omega
$$

 ν : ficticious frequency in w-plane, ω : true frequency

Example

If the design requirement says a bandwidth ω_b , the corresponding $rac{2}{T}$ tan $rac{\omega_b T}{2}$ [.](#page-29-0) bandwidth in the w-plane is $\nu_b = \frac{2}{l}$

Phase lead/lag design (design in w-plane)

- 1. Obtain $G(z)$ and transform it to $G(w) = G(z)|_{z=\frac{1+\tfrac{T}{2}w}{T}}$ $1-\frac{T}{2}w$ 2 .
- 2. Substitute $j\nu$ as w in $G(w)$ and obtain the Bode plot $|G(j\nu)|$ and $\angle G(j\nu)$.

KID KA KERKER E VOOR

- 3. Use the conventional design methods for CT systems to determine $G_D(w)$ such that the open-loop system $G_D(w)G(w)$ satsifies design specifications (e.g., phase margin, gain margin, DC gain condition)
- 4. Transform $G_D(w)$ to $G_D(z) = G_D(w)|_{w = \frac{2}{T}\frac{z-1}{z+1}}$.
- 5. Realize $G_D(z)$ via a computaional algorithm, e.g., convert it to a difference equaiton or a SS representation
- \star : Frequency axis in the w-plane is distorted. what is the relationship?

Review of Bode plot in CT

\blacktriangleright Definition

- \blacktriangleright how to sketch
- ▶ Gain and phase margins

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

▶ Example

Phase lag compensation in DT

Compensator: $G_D(w) = k_D \frac{1+\tau w}{1+\beta \tau w}$ $\frac{1+\tau w}{1+\beta\tau w}$, $(k_D>0, \tau>0, \beta>1)$

▶ Pole:

▶ Zero:

 \blacktriangleright Bode plot for $G_D(w)$

 \blacktriangleright Magnitude and phase plots Closed-loop system diagram

Open-loop system $G_D(w)G(w) = k_D \frac{1+\tau w}{1+\beta \tau w}$ $\frac{1+\tau w}{1+\beta \tau w} G(w).$

KORKARYKERKER POLO

Determine the compensator

 \triangleright Determine k_D based on gain conditions:

- **►** Design τ and β to yield a desired phase margin ϕ_m (given). Let $G_1(w) = k_D G(w)$ (known).
	- ▶ Create the bode plot of $G_1(w)$ (magnitude and phase)
	- ▶ Determine the frequency w_{w_1} at which the phase plot of $G_1(j\nu)$ has a phase angle of $-180^\circ + \phi_m + 5^\circ \sim 12^\circ$ (to compensate for the phase lag of $G_D(w)$)
	- \triangleright w_{w_1} is the frequency at which the phase margin occurs (after compensation).
	- Set $\frac{1}{\tau} = 0.1 w_{w_1}$ (far away from w_{w_1})
	- At \overline{w}_{w_1} , we would like $|\overline{G}_D(jw_{w_1})\overline{G}_1(jw_{w_1})|=1$, which leads to

KORKAR KERKER SAGA

Convert to z-domain

 \triangleright Once $G_D(w)$ is solved from the previous procedure,

$$
G_D(z) = G_D(w)|_{w = \frac{2}{T} \frac{z-1}{z+1}} = k_D \frac{(1 + \frac{2\tau}{T})z + 1 - \frac{2\tau}{T}}{(1 + \frac{2\beta\tau}{T})z + 1 - \frac{2\beta\tau}{T}}.
$$
 (4)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Phase lead compensators in DT

Compensator: $G_D(w) = k_D \frac{1+\tau w}{1+\alpha\tau w}$ $\frac{1+\tau w}{1+\alpha\tau w}$, $(k_D>0, \tau>0, \alpha>1)$

- ▶ Pole:
- ▶ Zero:
- \blacktriangleright Bode plot for $G_D(w)$
- ▶ Magnitude and phase plots

Open-loop TF:
$$
G_D(w)G(w) = k_D \frac{1+\tau w}{1+\alpha \tau w} G(w) = \frac{1+\tau w}{1+\alpha \tau w} \underbrace{[k_D G(w)]}_{G_1(w)}
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Design procedure

- \triangleright Determine k_D based on a given gain or static velocity error constant.
- \triangleright Create bode plots of $G_1(w)$ and evaluate the phase margin.
- ▶ Determine the necessary phase lead angle ϕ to be added to the system (based on the phase margin requirement)
- ▶ Add $5 \sim 12^{\circ}$ to ϕ to compensate for the shift of the crossover frequency
- ▶ $\phi + 5 \sim 12^{\circ} = \phi_m$. From sin $\phi_m = \frac{1-\alpha}{1+\alpha}$ $\frac{1-\alpha}{1+\alpha}$, solve α .
- ▶ Select $v_m = \frac{1}{\sqrt{2}}$ $\frac{1}{\alpha\tau}$ as the gain crossover frequency. How?

• Set
$$
\tau = \frac{1}{\sqrt{\alpha v_m}}
$$
.

 \triangleright Check the phase margin and repeat the process by modifying pole/zero locations.

▶ Convert $G_D(w)$ into z-domain using $w = \frac{2}{l}$ $w = \frac{2}{l}$ $w = \frac{2}{l}$ [T](#page-38-0) $rac{z-1}{z+1}$ $rac{z-1}{z+1}$ $rac{z-1}{z+1}$ $rac{z-1}{z+1}$ [.](#page-38-0)

Example (MATLAB code)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @