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What we have covered so far:

▶ Conventional (classical): Analysis Design

▶ Modern (state space): Analysis Design



Conventional control design

▶ Based on Z -transform

▶ Open-loop system vs. closed-loop system in block diagrams

▶ Objective: design GD(z) such that the closed-loop system
satisfies certain performance requirements.



Performance specifications

▶ Transient performance

▶ Steady-state performance

▶ Standard testing signal for r (input):
▶ (unit) step function

▶ ramp function

▶ acceleration function

▶ sinusoidal funcation



Transient performance

Given a step input (assume all initial conditions are 0):

▶ delay time (td): time when the output reaches CF
2

▶ rise time (tr ): time the output takes to rise from 10% CF to
90% CF

▶ peak time (tp): time when the output reaches the first peak

▶ Maximum shoot: the output at tp, y(tp)

▶ Overshoot percentage:
y(tp)−CF

CF
× 100%

▶ Settling time (ts): time required for the output to settle
within 2% (5%) of the final value CF



Map damping ratio/natural frequency in Z -domain

Recall z = eTs . Since s = σ + jω,

z = eT (σ+jω) = eTσe jTω. (1)

Consider the 2nd order system: G (s) = w2
n

s2+2ζwns+w2
n

▶ Poles: s1,2 = −ζwn ±
√
1− ζ2wnj wn, ζ?

▶ From (1), z1,2 = eTs1,2 = e−ζwnT e±T
√

1−ζ2wnj .

▶ Thus, |z1,2| = e−ζwnT , ∠z1,2 = ±T
√
1− ζ2wn.

▶ Given ζ,wn, we can find the corresponding poles in DT:

z1,2 = e−ζwnT e±T
√

1−ζ2wnj .



Quiz

Given a z-domain pole z = r∠θ (complex poles), find the
corresponding ζ,wn. Also compute the time constant τ = 1

ζwn
in

terms of T , r , θ.
Hint: Start with r = e−ζwnT and θ = T

√
1− ζ2wn to solve for wn

and ζ in terms of r , θ,T .



Steady-state (SS) performance
▶ Measured by SS errors (use Final value theorem (FVT),

assume FVT can be applied)
▶ Type 0, I, II, ... systems:

▶ Type 0: finite SS error for step input, infinite error for higher
order inputs (ramp, acceleration, ...)

▶ Type I: 0 SS error for step input, finite SS error for ramp input,
infinite SS error for higher order input (acceleration, ...)

input signal step ramp acceleration higher order

Type 0 finite error ∞ ∞ ∞
Type I 0 finite error ∞ ∞
Type II 0 0 finite error ∞

As the system type increases

▶ better SS performance

▶ difficult to stabilize



System type

▶ Suppose that the open-loop PFT is 1
(z−1)N

B(z)
A(z) , where B(z)

and A(z) contain no zero or pole at z = 1. The closed-loop
system is type N, provided that the closed-loop system is
stable.

▶ Example for N = 1, 2 with the block diagram





Root locus based control design

The PTF of the closed-loop
system is given by

C (z)

R(z)
=

KG (z)

1 + KGH(z)

where G (z) = Z (G (s)) and
GH(z) = Z (G (s)H(s)).

The characteristic equation of the PTF is given by

⋆ : 1 + KGH(z) = 0, KGH(z) =
num(z)

den(z)
. (2)

Root locus (RL) is the plot of the locus of the roots of ⋆ in the
z-plane as a function of K .

▶ The construction procedure of RL in DT is the same as in CT.

▶ The stability region in DT is the unit circle while in CT it is
the open left half plane.
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RL drawing rules (only important ones)

1. RL originates from the poles of GH(z) = 0 (den(z) = 0) and
terminate at the zeros of GH(z) = 0 (num(z) = 0) (including
∞). why?

1+KGH(z) = 0 ⇒ 1+K
num(z)

den(z)
= 0 ⇒ den(z)+Knum(z) = 0

RL starts at K = 0 ⇒ den(z) = 0 ⇒ poles of GH(z)
RL terminates at K = ∞ ⇒ num(z) = 0 ⇒ zeros of GH(z)

2. The RL on the real axix lies in a section of the real axis that is
to the left of an odd number of poles and zeros on the real
axis.

3. The RL is symmetric w.r.t. the real axis.
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Continued: RL drawing rules (only important ones)

4. The number of asymptotes of RL equals np − nz , np, nz are
the number of the poles and zeros of GH(z), respectively.

The angles of the asymptotes are (2k+1)π
np−nz

, k = 0, 1, · · · .
5. The asymptotes intersect the real axis at

σ =
∑
poles of GH(z)−

∑
zeros of GH(z)

np−nz

6. The breakaway points are given by the roots of dGH(z)
dz = 0.



Example: KGH(z) = K0.368(z+0.717)
(z−1)(z−0.368)



Design via RL

Principle

Consider a closed-loop system and its characteristic equation
1 + KD(z)G (z) = 0. Then a point za is on the RL if
1 + KD(za)G (za) = 0 for some K and D(z).

1 + KD(za)G (za) = 0 ⇔
{

K = 1
|D(za)G(za)|

∠D(za)G (za) = ±180◦
(3)

Design D(z) such that the closed-loop poles satisfy certain
requirements, such as a desired damping ratio and settling time.



Example (MATLAB code): Gp(s) =
1

s(s+2)





Control design based on frequency response

In CT, given a stable LTI system G (s) with sin(wt)
as input:

xss(t) = |G (jω)|︸ ︷︷ ︸
magnitude

sin(wt + ∠G (jω)︸ ︷︷ ︸
phase shift

)

In DT, given a stable LTI system G (z) with sampled
sin(wt) as input:

xss(kT ) = |G (e jωT )|︸ ︷︷ ︸
magnitude

sin(kwt + ∠G (e jωT )︸ ︷︷ ︸
phase shift

)

Recall z = eTs and let s = jω.

Observation
G (z)|z=e jωT provides magnitude and phase information of the
frequency response of G (z).
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w-plane

▶ Evaluating G (e jωT ) can be complex.

▶ Simplify the procedure by transforming the design from
z-domain to w-domain via the “bilinear” transformation

w =
2

T

z − 1

z + 1
⇔ z =

1 + T
2 w

1− T
2 w

▶ w-plane and s-plane are different. Why?



Design in the w-plane
Once G (z) is transformed to G (w) = G (z)|

z=
1+T

2 w

1−T
2 w

, it may be

treated as a conventional TF in w-domian. Conventional frequency
response based designs can be applie to G (w).

▶ By replacing w = jν, we can draw the Bode plot for
G (w)|w=jν .

▶ However, the frequency axis in the w-plane is distorted:

w = jν =
2

T

z − 1

z + 1
|z=e jωT = j

2

T
tan

ωT

2

ν =
2

T
tan

ωT

2

When ωT is small,

ν =
2

T
tan

ωT

2
≈ 2

T

ωT

2
= ω

ν : ficticious frequency in w-plane, ω: true frequency

Example

If the design requirement says a bandwidth ωb, the corresponding
bandwidth in the w-plane is νb = 2

T tan ωbT
2 .
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Phase lead/lag design (design in w-plane)

1. Obtain G (z) and transform
it to G (w) = G (z)|

z=
1+T

2 w

1−T
2 w

.

2. Substitute jν as w in G (w)
and obtain the Bode plot
|G (jν)| and ∠G (jν).

3. Use the conventional design methods for CT systems to
determine GD(w) such that the open-loop system
GD(w)G (w) satsifies design specifications (e.g., phase
margin, gain margin, DC gain condition)

4. Transform GD(w) to GD(z) = GD(w)|w= 2
T

z−1
z+1

.

5. Realize GD(z) via a computaional algorithm, e.g., convert it
to a difference equaiton or a SS representation

⋆: Frequency axis in the w-plane is distorted. what is the
relationship?



Review of Bode plot in CT

▶ Definition

▶ how to sketch

▶ Gain and phase margins

▶ Example



Phase lag compensation in DT

Compensator: GD(w) = kD
1+τw
1+βτw , (kD > 0, τ > 0, β > 1)

▶ Pole:

▶ Zero:

▶ Bode plot for GD(w)

▶ Magnitude and phase plots
Closed-loop system diagram

Open-loop system GD(w)G (w) = kD
1+τw
1+βτwG (w).



Determine the compensator

▶ Determine kD based on gain conditions:

▶ Design τ and β to yield a desired phase margin ϕm (given).
Let G1(w) = kDG (w) (known).
▶ Create the bode plot of G1(w) (magnitude and phase)
▶ Determine the frequency ww1 at which the phase plot of

G1(jν) has a phase angle of −180◦ + ϕm + 5◦ ∼ 12◦ (to
compensate for the phase lag of GD(w))

▶ ww1 is the frequency at which the phase margin occurs (after
compensation).

▶ Set 1
τ = 0.1ww1 (far away from ww1)

▶ At ww1 , we would like |GD(jww1)G1(jww1)| = 1, which leads to



Convert to z-domain

▶ Once GD(w) is solved from the previous procedure,

GD(z) = GD(w)|w= 2
T

z−1
z+1

= kD
(1 + 2τ

T )z + 1− 2τ
T

(1 + 2βτ
T )z + 1− 2βτ

T

. (4)



Phase lead compensators in DT

Compensator: GD(w) = kD
1+τw
1+ατw , (kD > 0, τ > 0, α > 1)

▶ Pole:

▶ Zero:

▶ Bode plot for GD(w)

▶ Magnitude and phase plots

Open-loop TF: GD(w)G (w) = kD
1+τw
1+ατwG (w) = 1+τw

1+ατw [kDG (w)]︸ ︷︷ ︸
G1(w)



Design procedure
▶ Determine kD based on a given gain or static velocity error

constant.

▶ Create bode plots of G1(w) and evaluate the phase margin.

▶ Determine the necessary phase lead angle ϕ to be added to
the system (based on the phase margin requirement)

▶ Add 5 ∼ 12◦ to ϕ to compensate for the shift of the crossover
frequency

▶ ϕ+ 5 ∼ 12◦ = ϕm. From sinϕm = 1−α
1+α , solve α.

▶ Select vm = 1√
ατ

as the gain crossover frequency. How?

▶ Set τ = 1√
αvm

.

▶ Check the phase margin and repeat the process by modifying
pole/zero locations.

▶ Convert GD(w) into z-domain using w = 2
T

z−1
z+1 .



Example (MATLAB code)


