!'_ Computer Methods (MAE 3403)

Introduction to numpy

Numerical methods in engineering with Python 3
Python Programming and Numerical Methods

i Introducing numpy arrays

. a powerful N-dimensional array object
. sophisticated (broadcasting) functions
. tools for integrating C/C++ and Fortran code

. useful linear algebra, Fourier transform, and random
number capabilities

= Numpy array is mostly related to numerical methods

2

i numpy array

Import numpy as np

X = np.array([1, 4, 3])

v = np.array([[1, 4, 3], [9, 2, 7]])
y.shape

y.Size

dtype: data type can be complex, np.float32,
np.float64, float, int16

i structured and predefined arrays

Z = np.arange(1, 2000, 1)
np.arange(0.5, 3, 0.5)
np.linspace(3, 9, 10)

n.zeros((3, 5))

n.ones((5, 3))

n.eye(3) #identity matrix of dim 3.

n.empty(3) # filled with random very small numbers

i R R R |

:_L arange(from,to,increment) function

rather than a list.

>>> from numpy import *
>>> print(arange(2,10,2))
[246 8]

>>> print(arange(2.0,10.0,2.0))
[2.4.6.8]

= Similar to the range function, but returns an array

>>> print(zeros(3))
[0.0.0]

>>> print(zeros((3),int))
[000]

>>> print(ones((2,2)))
[[1.1]

[1.1]]

:_L Access and change array elements

= For size-2 arrays, a[i,j] accesses the element in row /

and column ;. a[i] refers to row /.

>>> from numpy import *
>>> a = zeros((3,3),int)
>>> print(a)

[000]

00 0]
000]]
>>> a[0] = [2,3,2] # Change a row

>>> a[1,1] =5 # Change an element

>>> g[2,0:2] = [8,-3] # Change part of a row

>>> print(a) 6

i Indexing

= 1D array x: X[1] # 2" element, x[1:] #slicing, x[-1]
= 2D array y:

= Y[0,1] # first row and 2" column

= y[O,:] # first row of y

= y[:,-1] # last column of y

= y[:,[0 2]] # first and third column of y

= y[1:3,:] # 2" and third row of y

:_L Assignment

= @ = np.arange(1, 7) # array([1, 2, 3, 4, 5, 6])
ma[3] =7

= 3a[:3]=1

= a[1:4]=[9,8,7]

i Array operations

= Between a scalar (¢) and an array (b)

= b+c, b-c, b*c, b/c, b**c: operates on each element of b
with ¢

= Between two arrays (b and d)
= b+d, b-d correspond to matrix addition and subtraction

= b*d, b/d, b**d correspond to element-wise matrix
multiplication, division and power

= Numpy has many arithmetic functions, e.g., cos, sin, sqrt.
They operate on each element of an array.

9

i Matrices

= Created as 2D or nD arrays
= Matrix multiplication handled by the dot method

= P*Q in python: np.dot(P,Q)
= Other methods: P@Q, P.dot(Q), np.matmul(P, Q)

= Make sure the dimensions of P and Q are compatible for
matrix multiplication.

10

i Logic operations

X = np.array([1, 2, 4, 5, 9, 3])
y = np.array([0, 2, 3, 1, 2, 3])
X > 3

X >y

y=X[X>3]

X[x>3]=0

11

:_L Review of linear algebra and numpy

s Vectors: column and row vectors

= Norm of a vector measures the magnitude of a vector

with respect to the origin.

[vllz = /22507 [vllp = /(325 07), lvllee = max; Juj]

import numpy as np

vector_row = np.array([[1, -5, 3, 2, 4]])
vector_column = np.array([[1], [2], [3], [4]])
print(vector_row.shape)
print(vector_column.shape)

Notice we used nested list
to define the vectors. Try

vector = np.array([1,2,3,4])
print(vector.shape)

12

i Operations of vectors

= [ranspose: .T

= Computation of
norm

= multiplication:
scalar
multiplication, dot
product, cross
product

from numpy.linalg import norm
new_vector = vector_row.T
print(new_vector)

norm_1 = norm(new_vector, 1)
norm_2 = norm(new_vector, 2)
norm_inf = norm(new_vector, np.inf)

orint('L_1 is: %%norm_1)
orint('L_2 is: Y%norm_2)
print('L_inf is: "Yonorm_inf)

13

:_L Linear algebra module

= numpy has linalg containing routine tasks, such matrix
Inversion, etc.

from numpy import array
from numpy.linalg import inv
A = array(][4.0, -2.0, 1.0], \
-2.0, 4.0, -2.0], \

1.0, -2.0, 3.0]])
orint(inv(A))

14

i Square matrix

= Determinant: from numpy.linalg import det

= Inverse: from numpy.linalg import inv
= Condition number: from numpy.linalg import cond

= Rank: from numpy.linalg import matrix_rank

15

:_L Misc

= Np.hstack: stack horizontally, np.vstack: stack vertically
= Matrix concatenation: np.concatenate((A,B), axis=)

= for row in b:
= iterate through each row

= b.flat: flatten the array to a column vector

= np.reshape(# row, # column)

= Shallow copy: b = a # a changes as b changes

= deepcopy: d = a.copy() # a and d are now independent 1

6

* Python implementations

umerous and SIMPLE ways to solve systems of linear
equations in Python using the numpy module

= numpy.linalg.solve (LU decomposition) import numpy as np

A = np.array([[4, 3, -5],

:-21 _41 5]/

= Matrix inverse: 8, 8, 0]1)
y = np.array([2, 5, -3])

A_inv = np.linalg.inv(A) x = np.linalg.solve(A, y)

X = np.dot(A_inv, y) print(x)

17

	Slide 1: Computer Methods (MAE 3403)
	Slide 2: Introducing numpy arrays
	Slide 3: numpy array
	Slide 4: structured and predefined arrays
	Slide 5: arange(from,to,increment) function
	Slide 6: Access and change array elements
	Slide 7: Indexing
	Slide 8: Assignment
	Slide 9: Array operations
	Slide 10: Matrices
	Slide 11: Logic operations
	Slide 12: Review of linear algebra and numpy
	Slide 13: Operations of vectors
	Slide 14: Linear algebra module
	Slide 15: Square matrix
	Slide 16: Misc
	Slide 17: Python implementations

