Welcome

Digital Control Systems MAE/ECEN 5473

Dr. He Bai

Oklahoma State University

August 10, 2023

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Course logistics

- Syllabus available online my.okstate.edu
- Class meetings: Monday, Wednesday 8 9:15 am, online/asynchronous video recording (Classroom Building 322 reserved for discussions and exams).
- Prerequisites: MAE 4053 (Automatic Control Systems) or ECEN 4413. Familarity with MATLAB.
- Textbook: K. Ogata, *Discrete-Time Control Systems*, Prentice-Hall, Second edition, 1995 (ISBN 0-13-034281-5).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Course logistics

- Grading: Homework -20%, Project 20%, Quizzes 5%, Exams (5%, 25%, 25%).
- Two-week advance notice will be given for the mid-term exam. The final exam will be in the finals week.
- Office hour: online by appointment
- Contact info: he.bai@okstate.edu
- Academy integrity: academicintegrity.okstate.edu
- Current syllabus attachment: https://academicaffairs. okstate.edu/student-support/index.html

Class notes/videos will be available online.

Ground rules

- No TA: Use office hours and emails
- Attendance
- Minimize cell phone usage (silent or airplane mode)
- Late HWs will be penalized (*n* days late = $n \times 10\%$ off).
- Discussions and questions are always welcome.
- Exams: take-home/in-person (close book with one cheat sheet; basic calculator)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Online teaching: Two modes

- Microsoft Teams used for live streaming
- Asynchronous video recordings
- Starting in the 3rd week, weekly online discussions (30 min): indicate your availability https://www.when2meet.com/?20810393-QAsXZ

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Introduction: About you and your academic interests

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Introduction: Control systems

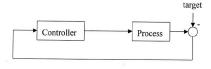
 Control systems: using controllers (sensors and actuators) to regulate behaviors of systems.

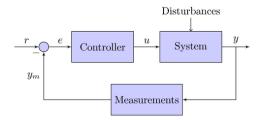
Regulate output of a system

Open-loop control

Examples: washer, sprinkler system, pushing a box

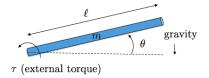
No feedback from system outputs.




▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Feedback control is needed.

Feedback control systems


- Objective is to drive the output of the process to the target
- Disturbances (to the system and controller) and noise (to the sensor) can come into the system

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Example

Equation of motion (with damping $-b\dot{\theta}$): Can you derive it?

$$\frac{m\ell^2}{3}\ddot{\theta} + mg\frac{\ell}{2}\cos\theta = \tau - b\dot{\theta}$$

• Objective is to regulate θ to θ_r

Different flavors of control designs: transfer function (classical), state space (modern), adaptive control, optimal control, robust control, digital control, ···

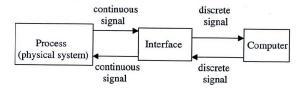
(日) (四) (日) (日) (日)

Digital control systems

Using computer or digital controllers to in control systems

- Availability of low-cost digital computers
- Advantage of using digital signals: reduced cost (control multiple loops using the same computer); flexibility in response to design changes (only need to update software) and (3) noise immunity (less sensitive to noise than analog signals)
- Applications in engineering, finance, social systems, include robotics, chemical process, power plant, car engine, cash reserve, population,...

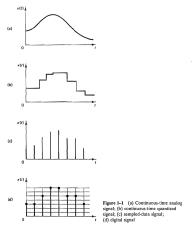
Examples:


 X-29 forward-swept airplane design - reference G. Kaplan, "The X-29: Is it coming or going?", IEEE Spectrum 1985. Then nowadays UAV autopilot design based on sensor data coming at a certain update rate (100 Hz IMU, 1 Hz GPS)

X-29

- Designed to sacrifice stability for high maneuverability and speed (forward-swept wings: reduce drag and increase maneuverability)
- Has to be controlled by computer (digital and analog backup, update rate 40 Hz)
- Computer control: due to lesser stability, increase the gain and bandwidth of components in flight to twice and three times their normal values (more sensitive to noise). Particular for pitch control: used a filter to estimate pitch acceleration (complementary filter) rather than measuring it directly.

A diagram of DCS



Interface: Sampling and hold (S/H), A/D, D/A converters

- Sampling: replace continuous time signals by a sequence of values at discrete time
- Hold: hold the sampled sensor value for a certain amount of time (because the A/D converter converts the voltage to a digital number via a digital counter, which takes time to reach the correct digital number.)
- A/D (encoder): converts an analog signal to a digital signal (quantization involved)
- ▶ D/A (decoder): converts a digital signal to an analog signal

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ・ つくぐ

Different kinds of signals (Fig. 1-1, page 2)

 Continuous time analog signal (a), Sampled-data signal (c), digital signal (d)

э

Additional signals:

- S/H signal (after holding becomes similar to (b))
- Continuous time quantized signal (b)

Quantization error

- Amplitude quantization: analog signal by a finite number of discrete states
- Binary system of n bits: represent 2ⁿ amplitude levels
- Quantization level (Q): Full scale range (FSR)/2ⁿ, or least significant bit
- Quantization error: between 0 and 1/2Q, i.e., 0 ≤ |x − x_q| ≤ 1/2Q.
- Increasing n reduces quantization error
- Approximate quantization error as uniformly distributed random noise in (-1/2Q, 1/2Q): variance of the noise is Q²/12.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Computer: Control designs

- Most of modern control laws are implemented in discrete time (due to the use of computers).
- Design continuous controls and implement them in discrete time (is this enough?)
- Assume high update rates. Also sometimes the system is in discrete time only (e.g., identified through experiments)
- Directly design a discrete time control based on a discrete time system
 - Need to characterize the total effect of the process and the interface to design such a controller

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Process: Linear time-invariant system

Definition

A linear system: principle of superposition applies. Consider the input/output pairs (u_1, y_1) and (u_2, y_2) of a system. The system is linear if $(\alpha u_1 + \beta u_2, \alpha y_1 + \beta y_2)$ is also an input/output pair.

Linear systems may be described by differential equations or difference equations.

Definition

An LTI system: coefficients of DEs/ODEs are time-invariant (system properties do not change w.r.t. time).

$$\ddot{x} + k\dot{x} + gx = u$$

$$\ddot{x} + k\dot{x} + (g + \epsilon \cos \omega t) = u$$

$$x(k+1) = ax(k) + bu(k), \quad y(k) = x(k)$$

$$x(k+1) = a^{k}x(k) + bu(k), \quad y(k) = x(k)$$

Review of continuous time control for LTI

Example

The single-link robot example: second order system

$$\frac{m\ell^2}{3}\ddot{\theta} + mg\frac{\ell}{2}\cos\theta = \tau - b\ddot{\theta}$$
$$\tau = mg\frac{\ell}{2}\cos\theta + u$$
$$\Rightarrow \frac{m\ell^2}{3}\ddot{\theta} + b\dot{\theta} = u$$

Design u(t) such that $\theta(t)$ goes to a specific location, say, θ_c as $t \to \infty$ (asymptotic stabilization).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Control design and analysis methods:

- Transfer function (Laplace transform)
- State space

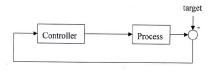
Transfer function

Laplace transform

$$F(s) = \int_0^\infty \exp(-st)f(t)dt$$

Let f(s) be the Laplace transforms of f(t).

Example


$$f(t) = 1 \Rightarrow F(s) = \frac{1}{s}$$

$$\dot{f}(t) \Rightarrow sF(s) - f(0) \text{ What about } \ddot{f}(t)?$$

Previous example gives the following transfer function

$$rac{m\ell^2}{3}(s^2\Theta(s)-s heta(0)-\dot{ heta}(0))+b(s\Theta(s)- heta(0))=U(s)$$

Ignoring initial conditions: Transfer function $P(s) = \frac{\Theta(s)}{U(s)} = ?$

Traditional analysis and design methods

Process: P(s), Control: C(s)

Analysis: Given a feedback controller C(s), analyze the stability and the performance of the system shown below.

- Closed-loop transfer function
- Analysis tools Routh hurwitz: stability of closed-loop H(s), root locus: Stability of H(s) w.r.t. gains, Bode plot: gain and phase margin, robustness to gains and delays.

Design: Construct C(s) to satisfy certain system performance (e.g., settling time, steady state error, overshoot, rising time, ...)

 Design methods: Root locus based designs, Phase lead/phase lag controllers, PID, ...

State space methods

$$\frac{m\ell^2}{3}\ddot{\theta}+b\dot{\theta}=u$$

Let $x_1 = \theta$ and $x_2 = \dot{\theta}$. Then

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{bmatrix} ? & ? \\ ? & ? \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{bmatrix} ? \\ ? \end{bmatrix} u(t), \quad y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

Analysis: Assume we are given a closed-loop system (e.g., $u = k_1 y$).

 Stability analysis: eigenvalues of system matrix, Lyapunov function

Design: How to design a feedback controller u(t) (i.e., making use of the output information)

Pole placement, observer design, LQR

This course

Developing similar tools for digital control systems

- Analysis (traditional and state space methods)
 - Z-transform, difference equations
 - Effects of sampling, zero-order hold, ...
 - Transfer function and stability
 - State space analysis (Stability, controllability/observability)

Designs

- Traditional approaches: root-locus and frequency methods.
- State space approaches: pole placement, observer design, state estimation.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Optimal control approaches: linear quadratic optimal control.

Next class (Aug. 28)

- DCS and Z-transform
- Read Chapter 1 and Chapter 2-1,2
- Entry exam (released) to recap some important concepts in continuous-time control systems
- Wednesday (Aug. 23) class is canceled to give your time to complete the entry exam

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●