Digital Control Systems MAE/ECEN 5473

Modeling of Sample and Hold Process

Oklahoma State University

August 14, 2023

Last time

- ▶ z transforms and inverse z transforms
- ▶ Using z transforms to solve difference equations

KO K K Ø K K E K K E K V K K K K K K K K K

review of the diagram

car driving problem with the diagram

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ (할 →) 익 Q Q

This new chapter

- ▶ Objective: analyze the effect of the sampler and hold using z transform as a tool
- \triangleright Assumptions: single rate, synchronized sampling if multiple samplers are used
- ▶ First, develop models for impulse sampling and data hold and thus the interface is modeled (show the relationship to the z transform)
- \triangleright Second, combine it with the plant and obtain the total transfer function
- ▶ Also study more about sampling: sampling frequency requirements, others such as aliasing, folding phenomenon

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

Impulse sampling: Model the sampler

▶ Impulse sampler: Fictitious sampler, output is considered a train of impulses beginning at $t = 0$ with sampling period T. The magnitude at each pulse is the sampled value of the continuous-time signal at each sampling instant.

KORKARYKERKER POLO

 \triangleright $\delta(t)$ function: unit impulse function, $\delta(t) = 1$ if $t = 0$, otherwise, $\delta(t) = 0$.

Output of sampler

The impulse-sampled output $x^*(t)$ of $x(t)$ is a sequence of impulses as shown above:

$$
x^*(t) = \sum_{k=0}^{\infty} x(kT)\delta(t - kT),
$$

or (star-transform)

$$
x^{*}(t) = x(0)\delta(t) + x(T)\delta(t-T) + x(2T)\delta(t-2T) + \cdots
$$

KORKARYKERKER POLO

▶ Define a train of unit impulses as $\delta_{\mathcal{T}}(t) = \sum_{k=0}^{\infty} \delta(t - kT)$. Then $x^*(t) = \sum_{k=0}^{\infty} x(kT) \delta(t - kT) =$

Laplace transform of the output

$$
X^*(s) = \mathcal{L}[x^*(t)] = x(0)\mathcal{L}[\delta(t)] + x(T)\mathcal{L}[\delta(t-T)] + \cdots
$$

$$
\triangleright \mathcal{L}[\delta(t - nT)] = e^{-nTs}, n = 0, 1, \cdots
$$

- ▶ $X^*(s) = x(0) + x(T)e^{-Ts} + x(2T)e^{-2Ts} + \cdots$
- Exactly the same as Z transform if we say $e^{Ts} = z$.
- ▶ So $X^*(s)|_{s=1/T \ln z} = X(z)$. That is: the Laplace transform of the output of the impulse sampler is equivalent to the Z-transform of the output if $e^{Ts} = z$.
- ▶ Impulse sampling used as a fictitious sampler and does NOT exist in practice.

KORKAR KERKER SAGA

From Laplace transform (s-domain) to Z-transform (z-domain)

Goal: Convert $X(s) = \mathcal{L}(x(t))$ to $X(z)$ (and $X^*(s)$) Recall $\mathcal{L}[f(t)g(t)] =$

Given $\mathcal{L}[x(t)] = X(s)$ and $\mathcal{L}[\sum_{k=0}^{\infty} \delta(t - kT)] =$ we compute $X^*(s) = \mathcal{L}(x^*(t)) = \mathcal{L}[x(t) \sum_{k=0}^{\infty} \delta(t - kT)] =$

KORKARYKERKER POLO

Final formula: from star transform to Z-transform

KOKK@KKEKKEK E 1990

Example

KO KKOKKEKKEK E 1990

Modeling the data hold

Data hold is a process of generating a continuous time signal $h(t)$ based on a DT sequence $x(kT)$.

- \triangleright There are different ways of holding the value or generating $h(t)$, e.g., zero order, first order, etc
- \blacktriangleright The signal $h(t)$ between kT and $(k+1)T$ may be of the form

$$
h(kT + \tau) = a_n \tau^n + a_{n-1} \tau^{n-1} + \cdots + a_1 \tau + a_0, \quad 0 \leq \tau < T
$$

YO A 4 4 4 4 5 A 4 5 A 4 D + 4 D + 4 D + 4 D + 4 D + 4 D + + E + + D + + E + + O + O + + + + + + + +

- Since $h(kT) = x(kT)$, we have $a_0 = x(kT)$.
- \blacktriangleright Given different *n*, we have different order of data hold: zero-order hold $(n = 0)$, first-order hold $(n = 1)$, ...

Zero-order hold (our assumption throughout the course)

$$
h(kT+\tau)=x(kT)
$$

▶ How to obtain a transfer function of the data hold: input $x^*(s)$ and output $h(s)$, the laplace transform of $h(t)$.

Next slide develops the transfer function. First consider $h_1(t)$ and then $h_2(t) = h_1(t)$

Development of the transfer function

First consider $h_1(t)$ in figure (a). Recall step function: $1(t - t_1) = 1$, if $t \ge t_1$, otherwise, it is zero.

$$
h_1(t) = x(0)[1(t) - 1(t - T)] + x(T)[1(t - T) - 1(t - 2T)] + x(2T)[1(t - 2T) - 1(t - 3T)] + \cdots
$$

\n- Further obtain
\n- $$
h_1(t) = \sum_{k=0}^{\infty} x(k) [1(t - k) - 1(t - (k+1))]
$$
\n- Because $C[1(t - k)] = \frac{e^{-k}}{2}$ (from Laplace transform table)
\n

▶ Because $\mathcal{L}[1(t - kT)] = \frac{e^{-kTs}}{s}$ (from laplace transform table)

$$
\mathcal{L}[h_1(t)] = H_1(s) = \sum_{k=0}^{\infty} x(kT) \left[\frac{e^{-kTs}}{s} - \frac{e^{-(k+1)Ts}}{s} \right]
$$

$$
\mathcal{L}[h_1(t)] = \frac{1-e^{-\mathcal{T}s}}{s} \sum_{k=0}^{\infty} \mathsf{x}(k\mathcal{T}) e^{-k\mathcal{T}s}
$$

KORKARYKERKER POLO

TF

Since $h_1(t) = h_2(t)$, $H_1(s) = H_2(s) = \frac{1 - e^{-\tau s}}{s} \sum_{k=0}^{\infty} x(kT) e^{-kT s}$.

Note that the summation term is indeed $X^*(s)$, if you recall.

▶ So the transfer function $G_{h0}(s) = \frac{1-e^{-Ts}}{s}$.

Note that the two figures are mathematically equivalent from the input-output relationship, i.e., a real sampler and zero order hold can be replaced by a (mathematically) equivalent continuous-time system that consists of an impulse sampler and a transfer function $1-e^{-Ts}$ $\frac{e^{-ts}}{s}$.

KORKAR KERKER DRAM

First order hold

 \bullet First order hold: $G_{h1}(s)=\left(\frac{1-e^{-\tau s}}{s}\right)$ $\left(\frac{e^{-T s}}{s}\right)^2 \frac{T s + 1}{T}$ $\frac{s+1}{T}$. We will omit the derivation.

KORK EXTERNE PROVIDE

How the extrapolation is done in the figure?

Recap

- ▶ Impulse sampler model: output is the star transform of the signal (z-transform with *z* replaced by e^{Ts} .)
- ▶ Hold process: transfer function given by $(1 e^{-Ts})/s$.
- \blacktriangleright Difficulty to work with e^{Ts} . How can we make use of z transform?
- \blacktriangleright Impulse sampler can be easily converted to z transform
- ▶ Hold process is usually followed by a continuous process to be controlled $G(s)$
- ▶ If we can actually convert $(1 e^{-Ts})/s \times G(s)$ to z domain, then we end up with everything in z domain (note that control algorithms described by DEs can also be converted to z transforms.).

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

Conversion from s-domain to z-domain: background

Fact (Convolution): Laplace transform of product of two Laplace-transformable functions $f(t)$ and $g(t)$

$$
\mathcal{L}[f(t)g(t)] = \int_0^\infty f(t)g(t)e^{-st}dt = \frac{1}{2\pi j}\int_{c-j\infty}^{c+j\infty} F(p)G(s-p)dp.
$$

Derivation provided in book

• For
$$
x^*(t) = \sum_{k=0}^{\infty} x(t)\delta(t - kT) = x(t)\sum_{k=0}^{\infty} \delta(t - kT)
$$
, we have

$$
X^{\star}(s) = \mathcal{L}[x^{\star}(t)] = \mathcal{L}[x(t)\sum_{k=0}^{\infty} \delta(t - kT)]
$$

• Note that $\mathcal{L}[\sum_{k=0}^{\infty} \delta(t - kT)] = 1 + e^{-Ts} + \cdots = \frac{1}{1 - e^{-Ts}}$

• Applying the above fact of Laplace transform

$$
X^*(s) = \frac{1}{2\pi j} \int_{c-j\infty}^{c+j\infty} X(p) \frac{1}{1 - e^{-T(s-p)}} dp
$$

KORKAR KERKER SAGA

$$
X^{\star}(s) = \frac{1}{2\pi j} \int_{c-j\infty}^{c+j\infty} X(\rho) \frac{1}{1 - e^{-\mathcal{T}(s-\rho)}} d\rho
$$

- \triangleright shows how to convert from $X(s)$ to z domain
- \blacktriangleright How to evaluate the integral?
- ▶ What is the integral path $c j\infty$ to $c + j\infty$? It needs to separate the poles of $X(\rho)$ and those of $\frac{1}{1-e^{-\tau(s-\rho)}}$.
- ▶ How to do the integral? Evaluating residues by forming a closed contour consisting of the line $c - j\infty$ to $c + j\infty$ and a semicircle Γ of infinite radius in the left or right half plane, provided that the integral along the added semicircle is constant or zero. Draw the figure (Figure 3-8 in the book) $X^\star(s) = \frac{1}{2\pi j}$ $\oint X(p) \frac{1}{1-p}$ $\frac{1}{1-e^{-\mathcal{T}(s-\rho)}}d\rho\!-\!\frac{1}{2\pi}$ $2\pi j$ Z $X(p)$ ¹ $\frac{1}{1-e^{-\mathcal{T}(s-p)}}dp$

Γ

Evaluating with the semicircle Γ in the left half plane

$$
X^{\star}(s) = \frac{1}{2\pi j} \oint X(p) \frac{1}{1 - e^{-\mathcal{T}(s-p)}} dp - \frac{1}{2\pi j} \int_{\Gamma} X(p) \frac{1}{1 - e^{-\mathcal{T}(s-p)}} dp
$$

Assumptions of $X(s)$: If $X(s) = q(s)/p(s)$ with poles in the left half-plane (including imaginary axis) and $p(s)$ is of a higher order degree in s than $q(s)$, $\lim_{s\to\infty} X(s) = 0$. Consequence Integral along Γ vanishes. Now go from

$$
X^{\star}(s) = \frac{1}{2\pi j} \oint X(p) \frac{1}{1 - e^{-\mathcal{T}(s-p)}} dp
$$

to Z-transform

$$
X(z) = \frac{1}{2\pi j} \oint X(p) \frac{z}{z - e^{Tp}} dp
$$

KORKAR KERKER SAGA

Evaluation

$$
X(z) = \frac{1}{2\pi j} \oint X(p) \frac{z}{z - e^{T p}} dp
$$

KORKARYKERKER POLO

equals \sum [the residue of $X(p) \frac{z}{z-a}$ $\frac{z}{z-e^{\tau_p}}$ at pole of $X(\rho)$] Or you replace p by s .

▶ simple pole: $K_j = \lim_{s \to s_j} [(s - s_j)X(s)] \frac{s}{s - s_j}$ $\frac{s}{s-e^{\tau_s}}$]

 \blacktriangleright multiple pole of order n_i : $K_j = \frac{1}{(n_i-1)!} \lim_{s \to s_j} \frac{d^{n_i-1}}{ds^{n_i-1}}$ $\frac{d^{n_i-1}}{ds^{n_i-1}}[(s-s_j)^{n_i}X(s)\frac{s}{s-\epsilon}$ $\frac{s}{s-e^{\tau_s}}$] ▶ where did we use this "residue" concept?

Example: refer to paper note

Evaluating with the semicircle Γ in the right half plane

Reserved for later: This is not useful for converting to z transform, but more related to sampling theorem

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Next time

Sampling theorem Impulse transfer function

- CT: TF relates the input and the output.
- DT: Impulse transfer function does the same thing.

KO K K Ø K K E K K E K V K K K K K K K K K