Digital Control Systems MAE/ECEN 5473

Quadratic Optimal Control

Oklahoma State University

August 14, 2023

Optimal control

- Optimal control: Design a control that yields "best" performance with respect to some "objective function"
- Cost function (performance index):

$$J_N = \sum_{k=0}^{N} L_k(y(k), x(k), u(k), r(k))$$
(1)

Design u(k), $k = 0, \dots, N$ such that J_N is minimized subject to

$$x(k+1) = Gx(k) + Hu(k)$$

• If J_N is to be maximized, then minimize $-J_N$.

Quadratic cost

$$J_N = \sum_{k=0}^{N} x(k)^T Q(k) x(k) + u(k)^T R(k) u(k)$$
(2)

Design parameters: Q(k) – Positive semidefinite (PSD), R(k) – Positive definite (PD)

Example $Q(k) = C^T C.$

Example

Choose R(k) to be PD.

Optimal control problems

- Given x(k+1) = Gx(k) + Hu(k) and y(k) = Cx(k), assume full state feedback, i.e., x(k) is available.
- ▶ Determine a control u(k) = f(x(k)) such that the cost function $J_N = \sum_{k=0}^N x(k)^T Q(k) x(k) + u(k)^T R(k) u(k)$ is minimized, where Q(k) is PSD and R(k) is PD.
- An optimal control is optimal only for the selected performance index (cost function), i.e., may not be optimal for other cost functions.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Disclaimer

In the book, $J_N = \frac{1}{2}x(N)^T Sx(N) + \frac{1}{2} \sum_{k=0}^{N-1} (x(k)^T Qx(k) + u(k)^T Ru(k)).$

This is equivalent to our notation $J_N = \sum_{k=0}^N x(k)^T Q(k) x(k) + u(k)^T R(k) u(k) \text{ with } Q(N) = \frac{1}{2}S,$ $R(k) = \frac{1}{2}R, \ Q(k) = \frac{1}{2}Q, \ u(N) = 0.$

A D N A 目 N A E N A E N A B N A C N

Quiz: Why can we set u(N) = 0 in our formulation?

Solve optimal control

Principle of optimality (Richard Bellman)

If the control u(k) = f(x(k)) is optimal over the period $0 \le k \le N$, then it is also optimal over any horizon $m \le k \le N$, where $0 \le m \le N$.

Optimal control can be solved backwards in time.

PoO applied to optimal control

• Define
$$F(k) = x(k)^T Q(k) x(k) + u(k)^T R(k) u(k)$$
.

- Define S_m to be the cost from k = N m + 1 to k = N (cost to go), i.e., $S_m = F(N m + 1) + F(N m + 2) + \cdots + F(N)$.
- Note $J_N = \sum_{k=0}^N F(k)$ and $S_m = J_N J_{N-m}$.

Principle

If J_N is optimized, S_m must be optimized, $m = 1, \cdots, N + 1$.

- 1. Start with minimizing $S_1 = J_N J_{N-1} = F(N)$ w.r.t. u(k).
- 2. Optimize $S_2 = F(N-1) + F(N) = F(N-1) + S_1^*$ where S_1^* is the optimized value of S_1 .

- 3. :
- 4. Continue this process until $S_{N+1} = J_N$ is minimized.

Example

<ロト < 個 ト < 臣 ト < 臣 ト 三 の < @</p>

Example continued

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Observations

- The optimal control is linear: u(k) = -K(k)x(k).
- The optimal control is time-varying because K(k) depends on K.

- ► The optimal control is solved backwards in time.
- The minimum of the cost function depends on the initial condition x(0). Show.

The minimum principle

Given x(k+1) = Gx(k) + Hu(k), determine u(k) = f(x(k)) such that $J_N = \sum_{k=0}^{N} x(k)^T Q(k) x(k) + u(k)^T R(k) u(k)$ is minimized, where Q(k) is PSD and R(k) is PD.

Principle

If $u^*(k)$ is optimal and the corresponding $x^*(k)$ is optimal, then there exists a sequence of nontrivial vectors $\{p^*(k)\}$ such that $u^*(k)$ is the value of u(k) that minimizes the Hamiltonian

$$H_{k} = \frac{1}{2} (x^{*}(k)^{T} Q(k) x^{*}(k) + u(k)^{T} R(k) u(k)) + p^{*}(k+1)^{T} (Gx^{*}(k) + Hu(k)).$$
(3)

Linear two-point boundary value problem

- For $p^*(k)$, given $p^*(N)$, it is solved backward in time.
- For $x^*(k)$, given x(0), it is solved forward in time.

optimal control algorithm: the optimal control is given by

$$u^{*}(k) = -K(k)x(k)$$

$$K(k) = [H^{T}P(k+1)H + R(k)]^{-1}H^{T}P(k+1)G \quad (\star)$$

$$P(k) = G^{T}P(k+1)[G - HK(k)] + Q(k) \quad (\star\star)$$

- 1. Start with P(N) = Q(N), K(N) = 0.
- 2. Solve for K(N-1) from (\star)
- 3. Solve for P(N-1) from $(\star\star)$ using P(N) and K(N-1)
- 4. Solve for K(N-2) from (*) using P(N-1) from 3.
- 5. Solve for P(N-2) from $(\star\star)$ using P(N-1) and K(N-2) from 4.

- 6. ÷
- 7. Solve for K(0) and then P(0).

Final comments

► The optimal cost J achieved by u*(k) = -K(k)x(k) is J* = min J = x(0)^TP(0)x(0).

So far, only considered finite horizon problems, i.e., N is finite.

- ▶ Infinite horizon: $N \to \infty$, Q(k) = Q, R(k) = R.
 - P(k) in (**) converges to a constant P.
 u*(k) = -Kx(k) where K is a constant gain matrix. From (*) and (**),

$$K = [H^T P H + R]^{-1} H^T P G, P = G^T P [G - H K] + Q \Rightarrow$$

Algebraic Riccati Equation (ARE):

$$P = G^T P G + Q - G^T P H (H^T P H + R)^{-1} H^T P G$$

- Main advantage: If (G, H) is controllable, P from the ARE is PD and u(k) = -Kx(k) is stabilizing.
- ▶ If the full state x(k) is not available, design an observer based on y(k) = Cx(k) and u(k) and use the estimate $\tilde{x}(k)$ in the feedback control $u(k) = -K\tilde{x}(k)$.

Example revisited

A "very practical" introduction to Kalman filter (KF)

Motivation

Reconstruct state from measurements & inputs (similar to an observer)

Reduce the noise impact in the estimate ("filtering")

Setup

- Dynamical system: $x_k = F_k x_{k-1} + G_k u_k + B_k w_k$
- Measurement: $z_k = H_k x_k + v_k$ (observation model)

$$\blacktriangleright$$
 x_k , F_k , u_k , w_k , v_k :

Objective: Given the noisy measurements z_k and input u_k, reconstruct x_k

KF equations

Assumption: {x₀, w₁, w₂, · · · , v₁, v₂, · · · } are mutually independent.

Notation. x̂_{n|m}: estimate of x at time step n (x_n) given observations up to time step m (i.e., {z₁, · · · , z_m}). What is x̂_{k|k}?

 $P_{k|k}$: error covariance of $\hat{x}_{k|k}$, measure of estimation accuracy

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

► $\mathcal{N}(\mu, \Sigma)$: Normal distribution with mean $\mu \in \mathbb{R}^d$ and covariance $\Sigma \in \mathbb{R}^{d \times d}_{>0}$ (PD matrix)

KF algorithm

KF equations: start with $\hat{x}_{0|0} \sim \mathcal{N}(x_0, P_{0|0})$ At time step $k, k \ge 1$, recursively implement

1. Prediction step (no measurements involved):

$$\hat{x}_{k|k-1} = F_k \hat{x}_{k-1|k-1} + G_k u_k$$
$$P_{k|k-1} = F_k P_{k-1|k-1} F_k^T + \frac{B_k Q B_k^T}{B_k Q B_k^T}$$

2. Update step (incorporate measurements):

$$\begin{split} \tilde{y}_{k} &= \underbrace{z_{k}}_{measured} - \underbrace{H_{k}\hat{x}_{k|k-1}}_{predicted} \\ S_{k} &= H_{k}P_{k|k-1}H_{k}^{T} + R, K_{k} = P_{k|k-1}H_{k}^{T}S_{k}^{-1}, \\ \hat{x}_{k|k} &= \hat{x}_{k|k-1} + K_{k}\tilde{y}_{k} \\ P_{k|k} &= (I - K_{k}H_{k})P_{k|k-1} \leq P_{k|k-1}? \end{split}$$

Conclusions/Results (without proof)

▶ If $\hat{x}_{0|0}$, $P_{0|0}$ accurately reflect the true distribution of x_0 , then

- ► KF is the optimal linear filter and minimizes the trace of P_{k|k}, if a) the model perfectly matches the real system, b) the noise is uncorrelated, c) R and Q are known exactly.
- If the noise (w_k, v_k) are not normal distribution, KF is still the best linear filter.
- If the dynamical system (F_k, H_k) is observable, the estimation error E(x_k − x̂_{k|k}) remains bounded.

Connection to current observer: Remove the prediction step

Example (MATLAB)

▲ロト ▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで