Digital Control Systems MAE/ECEN 5473

Quadratic Optimal Control

Oklahoma State University

August 14, 2023

Optimal control

- ▶ Optimal control: Design a control that yields "best" performance with respect to some "objective function"
- ▶ Cost function (performance index):

$$
J_N = \sum_{k=0}^N L_k(y(k), x(k), u(k), r(k))
$$
 (1)

Design $u(k)$, $k = 0, \dots, N$ such that J_N is minimized subject to

$$
x(k+1) = Gx(k) + Hu(k)
$$

► If J_N is to be maximized, then minimize $-J_N$.

Quadratic cost

$$
J_N = \sum_{k=0}^{N} x(k)^T Q(k) x(k) + u(k)^T R(k) u(k)
$$
 (2)

Design parameters: $Q(k)$ – Positive semidefinite (PSD), $R(k)$ – Positive definite (PD)

Example $Q(k) = C^{T} C.$ Example

Choose $R(k)$ to be PD.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Optimal control problems

- ▶ Given $x(k+1) = Gx(k) + Hu(k)$ and $y(k) = Cx(k)$, assume full state feedback, i.e., $x(k)$ is available.
- ▶ Determine a control $u(k) = f(x(k))$ such that the cost function $J_N = \sum_{k=0}^{N} x(k)^T Q(k) x(k) + u(k)^T R(k) u(k)$ is minimized, where $Q(k)$ is PSD and $R(k)$ is PD.
- \triangleright An optimal control is optimal only for the selected performance index (cost function), i.e., may not be optimal for other cost functions.

KORKAR KERKER SAGA

Disclaimer

In the book, $J_N=\frac{1}{2}$ $\frac{1}{2}x(N)^{\mathsf{T}}Sx(N) + \frac{1}{2}\sum_{k=0}^{N-1}(x(k)^{\mathsf{T}}Qx(k) + u(k)^{\mathsf{T}}Ru(k)).$

This is equivalent to our notation $J_N = \sum_{k=0}^N x(k)^T Q(k) x(k) + u(k)^T R(k) u(k)$ with $Q(N) = \frac{1}{2}S$, $R(k) = \frac{1}{2}R$, $Q(k) = \frac{1}{2}Q$, $u(N) = 0$.

KORKAR KERKER ST VOOR

Quiz: Why can we set $u(N) = 0$ in our formulation?

Solve optimal control

Principle of optimality (Richard Bellman)

If the control $u(k) = f(x(k))$ is optimal over the period $0 \leq k \leq N$, then it is also optimal over any horizon $m \leq k \leq N$, where $0 \le m \le N$.

▶ Optimal control can be solved backwards in time.

KORKAR KERKER SAGA

PoO applied to optimal control

$$
\blacktriangleright
$$
 Define $F(k) = x(k)^T Q(k)x(k) + u(k)^T R(k)u(k)$.

- ▶ Define S_m to be the cost from $k = N m + 1$ to $k = N$ (cost to go), i.e., $S_m = F(N-m+1) + F(N-m+2) + \cdots + F(N)$.
- ▶ Note $J_N = \sum_{k=0}^{N} F(k)$ and $S_m = J_N J_{N-m}$.

Principle

If J_N is optimized, S_m must be optimized, $m = 1, \dots, N + 1$.

- 1. Start with minimizing $S_1 = J_N J_{N-1} = F(N)$ w.r.t. $u(k)$.
- 2. Optimize $S_2 = F(N-1) + F(N) = F(N-1) + S_1^*$ where S_1^* is the optimized value of S_1 .

KORKARYKERKER POLO

- 3. . . .
- 4. Continue this process until $S_{N+1} = J_N$ is minimized.

Example

KO KKOKKEKKEK E 1990

Example continued

-
-
- -
-
- -
- - K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @
		-

Observations

- ▶ The optimal control is linear: $u(k) = -K(k)x(k)$.
- \blacktriangleright The optimal control is time-varying because $K(k)$ depends on K.

- \blacktriangleright The optimal control is solved backwards in time.
- \triangleright The minimum of the cost function depends on the initial condition $x(0)$. Show.

The minimum principle

Given $x(k + 1) = Gx(k) + Hu(k)$, determine $u(k) = f(x(k))$ such that $J_N = \sum_{k=0}^N x(k)^T Q(k) x(k) + u(k)^T R(k) u(k)$ is minimized, where $Q(k)$ is PSD and $R(k)$ is PD.

Principle

If $u^*(k)$ is optimal and the corresponding $x^*(k)$ is optimal, then there exists a sequence of nontrivial vectors $\{p^*(k)\}$ such that $u^*(k)$ is the value of $u(k)$ that minimizes the Hamiltonian

$$
H_k = \frac{1}{2} (x^*(k)^T Q(k) x^*(k) + u(k)^T R(k) u(k))
$$

+ $p^*(k+1)^T (Gx^*(k) + Hu(k)).$ (3)

►
$$
u^*(k)
$$
 satisfies $\frac{\partial H_k}{\partial u(k)} = 0$, i.e., $u^*(k) = -R^{-1}(k)H^T p^*(k+1)$.
\n► $p^*(k)$ satisfies $p^*(k) = \frac{\partial H_k}{\partial x^*(k)}$, i.e.,
\n $p^*(k) = Q(k)x^*(k) + G^T p^*(k+1)$, with
\n $p^*(N) = Q(N)x^*(N)$.

Linear two-point boundary value problem

- ▶ For $p^*(k)$, given $p^*(N)$, it is solved backward in time.
- ▶ For $x^*(k)$, given $x(0)$, it is solved forward in time.

optimal control algorithm: the optimal control is given by

$$
u^*(k) = -K(k)x(k)
$$

\n
$$
K(k) = [H^T P(k+1)H + R(k)]^{-1} H^T P(k+1)G \quad (*)
$$

\n
$$
P(k) = G^T P(k+1)[G - HK(k)] + Q(k) \quad (\star \star)
$$

- 1. Start with $P(N) = Q(N)$, $K(N) = 0$.
- 2. Solve for $K(N-1)$ from (\star)
- 3. Solve for $P(N-1)$ from $(\star \star)$ using $P(N)$ and $K(N-1)$
- 4. Solve for $K(N-2)$ from (\star) using $P(N-1)$ from 3.
- 5. Solve for $P(N-2)$ from $(\star\star)$ using $P(N-1)$ and $K(N-2)$ from 4.

KORK EXTERNE PROVIDE

- 6. . . .
- 7. Solve for $K(0)$ and then $P(0)$.

Final comments

▶ The optimal cost J achieved by $u^*(k) = -K(k)x(k)$ is $J^* = \min J = x(0)^T P(0)x(0)$.

 \triangleright So far, only considered finite horizon problems, i.e., N is finite.

- ▶ Infinite horizon: $N \to \infty$, $Q(k) = Q$, $R(k) = R$.
	- \blacktriangleright $P(k)$ in $(\star\star)$ converges to a constant P.

▶ $u^*(k) = -Kx(k)$ where K is a constant gain matrix. From (\star) and $(\star \star)$,

$$
K = [H^T P H + R]^{-1} H^T P G, P = G^T P [G - H K] + Q \Rightarrow
$$

Algebraic Riccati Equation (ARE):

$$
P = GT PG + Q - GT PH(HT PH + R)-1HT PG
$$

- \blacktriangleright Main advantage: If (G, H) is controllable, P from the ARE is PD and $u(k) = -Kx(k)$ is stabilizing.
- If the full state $x(k)$ is not available, design an observer based on $y(k) = Cx(k)$ and $u(k)$ and use the estimate $\tilde{x}(k)$ in the feedback control $u(k) = -K\tilde{x}(k)$. **KORKAR KERKER SAGA**

Example revisited

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

A "very practical" introduction to Kalman filter (KF)

- ▶ Motivation
	- ▶ Reconstruct state from measurements & inputs (similar to an observer)

 \blacktriangleright Reduce the noise impact in the estimate ("filtering")

- \blacktriangleright Setup
	- ▶ Dynamical system: $x_k = F_k x_{k-1} + G_k u_k + B_k w_k$
	- **•** Measurement: $z_k = H_k x_k + v_k$ (observation model)
	- \blacktriangleright x_k , F_k , u_k , w_k , v_k :

 \triangleright Objective: Given the noisy measurements z_k and input u_k , reconstruct x_k

KORKAR KERKER SAGA

KF equations

▶ Assumption: $\{x_0, w_1, w_2, \cdots, v_1, v_2, \cdots\}$ are mutually independent.

▶ Notation. \hat{x}_{nlm} : estimate of x at time step n (x_n) given observations up to time step m (i.e., $\{z_1, \dots, z_m\}$). What is $\hat{x}_{k|k}$?

 $P_{k|k}$: error covariance of $\hat{x}_{k|k}$, measure of estimation accuracy

YO A 4 4 4 4 5 A 4 5 A 4 D + 4 D + 4 D + 4 D + 4 D + 4 D + + E + + D + + E + + O + O + + + + + + + +

 $\blacktriangleright \mathcal{N}(\mu, \Sigma)$: Normal distribution with mean $\mu \in \mathbb{R}^d$ and covariance $\Sigma \in \mathbb{R}_{>0}^{d \times d}$ (PD matrix)

KF algorithm

KF equations: start with $\hat{x}_{0|0} \sim \mathcal{N}(x_0, P_{0|0})$ At time step $k, k \ge 1$, recursively implement

1. Prediction step (no measurements involved):

$$
\hat{x}_{k|k-1} = F_k \hat{x}_{k-1|k-1} + G_k u_k
$$

$$
P_{k|k-1} = F_k P_{k-1|k-1} F_k^T + B_k Q B_k^T
$$

2. Update step (incorporate measurements):

$$
\tilde{y}_k = \underbrace{z_k}_{measured} - \underbrace{H_k \hat{x}_{k|k-1}}_{\text{predicted}}
$$
\n
$$
S_k = H_k P_{k|k-1} H_k^T + R, K_k = P_{k|k-1} H_k^T S_k^{-1},
$$
\n
$$
\hat{x}_{k|k} = \hat{x}_{k|k-1} + K_k \tilde{y}_k
$$
\n
$$
P_{k|k} = (I - K_k H_k) P_{k|k-1} \le P_{k|k-1}?
$$

Conclusions/Results (without proof)

If $\hat{x}_{0|0}, P_{0|0}$ accurately reflect the true distribution of x_0 , then

- ▶ KF is the optimal linear filter and minimizes the trace of $P_{k|k}$, if a) the model perfectly matches the real system, b) the noise is uncorrelated, c) R and Q are known exactly.
- If the noise (w_k, v_k) are not normal distribution, KF is still the best linear filter.
- If the dynamical system (F_k, H_k) is observable, the estimation error $\mathbb{E}(x_k - \hat{x}_{k|k})$ remains bounded.

YO A 4 4 4 4 5 A 4 5 A 4 D + 4 D + 4 D + 4 D + 4 D + 4 D + + E + + D + + E + + O + O + + + + + + + +

Connection to current observer: Remove the prediction step

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Example (MATLAB)

KOKK@KKEKKEK E 1990