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Optimal control

» Optimal control: Design a control that yields “best”
performance with respect to some “objective function”

» Cost function (performance index):

Design u(k), k =0,---, N such that Jy is minimized subject
to
x(k + 1) = Gx(k) + Hu(k)

» If Jy is to be maximized, then minimize —Jy.



Quadratic cost

N
= x(k x(k) + u(k) T R(k)u(k) (2)
k=0
Design parameters: Q(k) — Positive semidefinite (PSD), R(k) —
Positive definite (PD)

Example Example
Q(k)=CTcC. Choose R(k) to be PD.



Optimal control problems

» Given x(k + 1) = Gx(k) 4+ Hu(k) and y(k) = Cx(k), assume
full state feedback, i.e., x(k) is available.

» Determine a control u(k) = f(x(k)) such that the cost
function Jy = S 0o x(K) T Q(Kk)x(k) + u(k) T R(k)u(k) is
minimized, where Q(k) is PSD and R(k) is PD.

» An optimal control is optimal only for the selected
performance index (cost function), i.e., may not be optimal
for other cost functions.



Disclaimer

In the book,
Iv = Ex(N)TSx(N) + %ZQ’;Ol(x(k)TQx(k) + u(k) T Ru(k)).

This is equivalent to our notation
Iv = Yo x(K) T Q(K)x(k) + u(k) T R(k)u(k) with Q(N) = 15,
R(k) = 3R, Q(k)=1Q, u(N)=0.

Quiz: Why can we set u(N) = 0 in our formulation?



Solve optimal control

Principle of optimality (Richard Bellman)

If the control u(k) = f(x(k)) is optimal over the period
0 < k < N, then it is also optimal over any horizon m < k < N,

where 0 < m < N.

» Optimal control can be solved backwards in time.



PoO applied to optimal control

» Define F(k) = x(k)T Q(k)x(k) + u(k)T R(k)u(k).
» Define S, to be the cost from k = N —m+ 1 to k = N (cost
to go), i.e., Sm=F(N—m+1)+F(N—m+2)+---+ F(N).
> Note Jy = SN F(k) and Sy = Iy — In_m.
Principle
If Jy is optimized, S,,, must be optimized, m=1,--- , N + 1.
1. Start with minimizing S; = Jy — Jy—1 = F(N) w.r.t. u(k).

2. Optimize S, = F(N — 1) + F(N) = F(N — 1) + 5; where S5
is the optimized value of S;.

. Continue this process until Sy = Jy is minimized.



Example



Example continued



Observations
» The optimal control is linear: u(k) = —K(k)x(k).
» The optimal control is time-varying because K (k) depends on
K.
» The optimal control is solved backwards in time.
» The minimum of the cost function depends on the initial
condition x(0). Show.



The minimum principle

Given x(k + 1) = Gx(k) + Hu(k), determine u(k) = f(x(k)) such
that Jy = S p_o x(k) T Q(K)x(k) + u(k) T R(k)u(k) is minimized,

where Q(k) is PSD and R(k) is PD.

Principle

If u*(k) is optimal and the corresponding x*(k) is optimal, then
there exists a sequence of nontrivial vectors {p*(k)} such that

u*(k) is the value of u(k) that minimizes the Hamiltonian

Hi = %(X*(k)TQ(k)X*(k) +u(k)TR(k)u(k))
+p*(k 4+ 1) T(Gx* (k) + Hu(k)).

» u*(k) satisfies aaHk =0, ie, u*(k) = —R Y Kk)H p*(k +1).

(k) —

k) satisfies p*(k) = %, ie.,

(
(
*(k) = Q(k)x*(k) + GTp*(k + 1), with
"(N) = Q(N)x*(N).

*
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Linear two-point boundary value problem
» For p*(k), given p*(N), it is solved backward in time.
» For x*(k), given x(0), it is solved forward in time.
optimal control algorithm: the optimal control is given by

oA~ b=

u* (k) = —K(k)x(k)
K(k)=[HTP(k+1)H+ R(K)]THTP(k+1)G (%)
P(k) = GTP(k 4+ 1)[G — HK(K)] + Q(k) (»*)

Start with P(N) = Q(N), K(N) = 0.

Solve for K(N — 1) from (x)

Solve for P(N — 1) from (xx) using P(N) and K(N — 1)
Solve for K(N — 2) from (x) using P(N — 1) from 3.

Solve for P(N — 2) from (xx) using P(N — 1) and K(N — 2)
from 4.

Solve for K(0) and then P(0).



Final comments

» The optimal cost J achieved by u*(k) = —K(k)x(k) is
J* = min J = x(0) " P(0)x(0).
» So far, only considered finite horizon problems, i.e., N is finite.
» Infinite horizon: N — oo, Q(k) = Q, R(k) = R.
» P(k) in (%) converges to a constant P.

» u*(k) = —Kx(k) where K is a constant gain matrix. From (%)
and (xx),

K=[H"PH+ R|"'HTPG,P = G P[G — HK] + Q =
Algebraic Riccati Equation (ARE):
P=G"PG+Q—G"PH(H"PH +R)*HT PG

» Main advantage: If (G, H) is controllable, P from the ARE is
PD and u(k) = —Kx(k) is stabilizing.

> If the full state x(k) is not available, design an observer based
on y(k) = Cx(k) and u(k) and use the estimate X(k) in the
feedback control u(k) = —KX(k).



Example revisited



A “very practical” introduction to Kalman filter (KF)

» Motivation
> Reconstruct state from measurements & inputs (similar to an
observer)
» Reduce the noise impact in the estimate (“filtering”)
» Setup

» Dynamical system: xx = Fyxx—1 + Grux + Brwy
> Measurement: zx = Hyxx + vk (observation model)
> X, Fro Ui, Wi, Ve

» Objective: Given the noisy measurements zx and input uy,
reconstruct xj



KF equations

» Assumption: {xp, w1, wa,- -+, vi, Vo, -} are mutually
independent.

> Notation. X, ,: estimate of x at time step n (x,) given
observations up to time step m (i.e., {z1,--- ,zn}). What is
Ru?

Py k: error covariance of X, measure of estimation accuracy

» N(u,X): Normal distribution with mean y € RY and
covariance ¥ € Riéd (PD matrix)



KF algorithm

KF equations: start with X0 ~ N (x0, Pojo)
At time step k, k > 1, recursively implement

1. Prediction step (no measurements involved):

Rulk—1 = FrXe—1jk—1 + Gruk
Pik—1 = FiPi_1jx—1F{ + BQB/

2. Update step (incorporate measurements):

Yk = Zy - Hk)?k\k—l
~  —
measured predicted
Sk = HkPk\k—lHlZ— + R, Kk = 'Dklk—lH’Z—SI:l’
Rik = Rujk—1 + Kk
Pk|/< = (- Kka)Pk|/<_1§ Pk\kfl?



Conclusions/Results (without proof)

> If Xoj0, Pojo accurately reflect the true distribution of xg, then

» KEF is the optimal linear filter and minimizes the trace of Py,
if a) the model perfectly matches the real system, b) the noise
is uncorrelated, ¢) R and Q@ are known exactly.

» If the noise (wg, vk) are not normal distribution, KF is still the
best linear filter.

» If the dynamical system (Fy, Hx) is observable, the estimation
error E(xx — Xy|x) remains bounded.



Connection to current observer: Remove the prediction
step



Example (MATLAB)



